PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mixtures of nanometric thermites and secondary explosives versus primary explosives

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Mieszaniny nanometrycznych termitów i materiałów wybuchowych kruszących a materiały wybuchowe inicjujące
Języki publikacji
EN
Abstrakty
EN
Possible substitutes for primary explosives containing lead may be compositions of the NSTEX type – mixtures of nanostructured thermites and explosives. These compositions, exhibit a number of unconventional features, intermediate between primary explosives and secondary explosives. These properties, make them the promising substitutes for primary explosives containing heavy metals, such as lead. The aim of this paper, is to identify the potential of application, possible challenges and risks associated with this issue.
PL
Ewentualnym zamiennikiem materiałów wybuchowych inicjujących zawierających ołów mogą być kompozycje typu NSTEX – mieszaniny nanometrycznych termitów i materiałów wybuchowych. Kompozycje te wykazują szereg niekonwencjonalnych cech, pośrednich pomiędzy materiałami wybuchowymi inicjującymi a materiałami wybuchowymi kruszącymi. Właściwości te czynią je obiecującymi zamiennikami materiałów wybuchowych inicjujących, zawierających metale ciężkie, takie jak ołów. Celem pracy, jest określenie potencjału zastosowania, możliwych wyzwań i zagrożeń związanych z tym zagadnieniem.
Słowa kluczowe
EN
MIC   NSTEX   DDT  
PL
MIC   NSTEX   DDT  
Rocznik
Tom
Strony
35--49
Opis fizyczny
Bibliogr. 46 poz., rys., tab., wykr.
Twórcy
  • Łukasiewicz Research Network ‒ Institute of Industrial Organic Chemistry, Department of Explosive Techniques, 1 Zawadzkiego St., 42-693 Krupski Młyn, Poland
Bibliografia
  • [1] Abrams J., El-Mallakh R.S., Meyer R. Suicidal Sodium Azide Ingestion. Ann. Emerg. Med. 1987, 16(12): 1378-1380.
  • [2] Fairhall L.T., Jenrette W.V.,Jones S.W., Pritchard E.A. The Toxicity of Lead Azide. Public Health Rep. 1943, 58(15): 607-617.
  • [3] Ji F., Yin H., Zhang H., Zhang Y., Lai B. Treatment of Military Primary Explosives Wastewater Containing Lead Styphnate (LS) and Lead Azide (LA) by mFe 0 -PS-O 3 Process. J. Clean. Prod. 2018, 188: 860-870.
  • [4] Nita M., Cudziło S., Celiński M. New Primary Explosive: Chlorate(VII)-μ-4-amino-1,2,4-triazol-μ-dichlorocopper(II). (in Polish) Biul. WAT 2010, 59(3): 61-69.
  • [5] Shunguan Z., Youchen W., Wenyi Z., Jingyan M. Evaluation of a New Primary Explosive: Nickel Hydrazine Nitrate (NHN) Complex. Propellants Explos. Pyrotech. 1997, 22(6): 317-320.
  • [6] He C., Shreeve J.M. Potassium 4,5-Bis(dinitromethyl)furoxanate: A Green Primary Explosive with a Positive Oxygen Balance. Angew. Chem. 2016, 128(2): 782-785.
  • [7] Tang Y., He C., Mitchell L.A., Parrish D.A., Shreeve J.M. Potassium 4,4′‐Bis(dinitromethyl)‐3,3′‐ azofurazanate: A Highly Energetic 3D Metal-Organic Framework as a Promising Primary Explosive. Angew. Chem. Int. Ed. 2016, 55(18): 5565-5567.
  • [8] Li W., Wang K., Qi X., Jin Y., Zhang Q. Construction of a Thermally Stable and Highly Energetic Metal-Organic Framework as Lead-Free Primary Explosives. Cryst. Growth Des. 2018, 18(3): 1896-1902.
  • [9] Khasainov B., Comet M., Veyssiere B., Spitzer D. Comparison of Performance of Fast-Reacting Nanothermites and Primary Explosives. Propellants Explos. Pyrotech. 2017, 42(7): 754-772.48M. P olis
  • [10] Nita M., Warchoł R. New Detonation Initiation System. (in Polish) Problemy Techniki Uzbrojenia.2015, 44(135): 33-47.
  • [11] Glavier L., Nicollet A., Jouot F., Martin B., Barberon J., Renaud L., Rossi C. Nanothermite/RDX-Based Miniature Device for Impact Ignition of High Explosives. Propellants Explos. Pyrotech. 2017, 42(3): 308-317.
  • [12] Comet M., Martin C., Schnell F., Spitzer D. Nanothermites: A Short Review. Factsheet for Experimenters, Present and Future Challenges. Propellants Explos. Pyrotech. 2019, 44(1): 18-36.
  • [13] Weismiller M.R., Malchi J.Y., Lee J.G., Yetter R.A., Foley T.J. Effects of Fuel and Oxidizer Particle Dimensions on the Propagation of Aluminum Containing Thermites. Proc. Combust. Inst. 2011, 33: 1989-1996.
  • [14] Apperson S., Shende R.V., Subramian S., Tappmeyer D., Gangopadhyay S. Generation of Fast Propagating Combustion and Shock Waves with Copper Oxide/Aluminum Nanothermite Composites. Appl. Phys. Lett. 2007, 91(24): 243109.
  • [15] Wang L., Luss D., Martirosyan K.S. The Behavior of Nanothermite Reaction Based on Bi2O3/Al. J. Appl. Phys. 2011, 110(7): 074311.
  • [16] Bockmon B.S., Pantoya M.L., Son S.F., Asay B.W., Mang J.T. Combustion Velocities and Propagation Mechanisms of Metastable Interstitial Composites. J. Appl. Phys. 2005, 98(6): 064903.
  • [17] Levitas V.I., Asay B.W., Son S.F., Pantoya M. Melt Dispersion Mechanism for Fast Reaction of Nanothermites. Appl.Phys.Lett. 2006, 89(7): 071909.
  • [18] Levitas V.I., Asay B.W., Son S.F., Pantoya M. Mechanochemical Mechanism for Fast Reaction of Metastable Intermolecular Composites Based on Dispersion of Liquid Metal. J. Appl. Phys. 2007, 101(8): 083524.
  • [19] Lafontaine E., Comet M. Nanothermites. London: John Wiley & Sons, 2016.
  • [20] Wang H., Kline D.J., Zachariah M.R. In-Operando High-Speed Microscopy and Thermometry of Reaction Propagation and Sintering in a Nanocomposite. Nat. Commun. 2019, 10(1): 30-32.
  • [21] Sullivan K.T., Piekiel N.W., Wu C., Chowdhury S., Kelly S.T., Hufnagel, T.C., Zachariah M.R. Reactive Sintering: An Important Component in the Combustion of Nanocomposite thermites. Combust. Flame. 2012, 159(1): 2-15.
  • [22] Jacob R.J., Hill K.J., Yang Y., Pantoya M.L., Zachariah M.R. Pre-Stressing Aluminum Nanoparticles as a Strategy to Enhance Reactivity of Nanothermite Composites. Combust. Flame. 2019, 205: 33-40.
  • [23] Shende R.V., Subramanian S., Hasan S., Apperson S., Gangopadhyay K., Gangopadhyay S., Redner P., Kapoor D., Nicolich S. Nanostructured Energetic Materials. Proc. 25th Army Science Conf. Orlando, FL, November 27-30, 2006.
  • [24] Prentice D., Pantoya M.L., Gash A.E. Combustion Wave Speeds of Sol−Gel-Synthesized Tungsten Trioxide and Nano-Aluminum: The Effect of Impurities on Flame Propagation. Energy Fuels 2006, 20(6): 2370-2376.
  • [25] Thiruvengadathan R., Staley C., Geeson J.M., Chung S., Raymond K.E., Gangopadhyay K., Gangopadhyay S. Enhanced Combustion Characteristics of Bismuth Trioxide-Aluminum Nanocomposites Prepared through Graphene Oxide Directed Self-Assembly. Propellants Explos. Pyrotech. 2015, 40(5): 729-734.
  • [26] Prakash A. Reaction Kinetics and Thermodynamics of Nanothermite Propellants. 4th Joint Meet. US Sections Comb. Inst., Philadelphia, PA, March 20-23, 2005 .
  • [27] Sanders V.E., Asay B.W., Foley T.J., Tappan B.C., Pacheco A.N., Son S.F. Reaction Propagation of Four Nanoscale Energetic Composites (Al/MoO3, Al/WO3, Al/CuO, and B12O3). J. Propuls. Power 2007, 23(4): 707-714.
  • [28] Prakash A., McCormick A.V., Zachariah M.R. Tuning the Reactivity of Energetic Nanoparticles by Creation of a Core-Shell Nanostructure. Nano Lett. 2005, 5(7): 1357-1360.
  • [29] Berthe J.E., Comet M., Schnell F., Suma Y., Spitzer D. Propellants Reactivity Enhancement with Nanothermites. Propellants Explos. Pyrotech. 2016, 41(6): 994-998.
  • [30] Comet M., Martin C., Klaumünzer M., Schnell F., Spitzer D. Energetic Nanocomposites for Detonation Initiation in High Explosives without Primary Explosives. Appl. Phys. Lett. 2015, 107(24): 243108.
  • [31] Qiao Z., Shen J., Wang J., Huang B., Yang Z., Yang G., Zhang K. Fast Deflagration to Detonation Transition of Energetic Material Based on a Quasi-Core/Shell Structured Nanothermite Composite. Compos. Sci. Technol. 2015, 107: 113-119.
  • [32] Luo Q., Long X., Nie F., Liu G., Zhu M. The Safety Properties of a Potential Kind of Novel Green Primary Explosive: Al/Fe2O3/RDX Nanocomposite. Materials 2018, 11(10): 1930.
  • [33] Zhu Y., Zhou X., Xu J., Ma X., Ye Y., Yang G., Zhang, K. In situ Preparation of Explosive Embedded CuO/Al/CL20 Nanoenergetic Composite with Enhanced Reactivity. Chem. Eng. J. 2018, 354: 885-895.
  • [34] Zaky M.G., Abdalla A.M., Sahu R.P., Puri I.K., Radwan M., Elbasuney S. Nanothermite Colloids: A New Prospective for Enhanced Performance. Def. Technol. 2019, 15(3): 319-325.
  • [35] Deng J., Li G., Shen L., Luo Y. Application of Al/B/Fe2O3 Nano Thermite in Composite Solid Propellant. Bull. Chem. React. Eng. Catal. 2016, 11(1): 109-114.
  • [36] Asay B. Non-Shock Initiation of Explosives. Berlin, Heidelberg: Springer, 2010.
  • [37] Trzciński W.A. Numerical Analysis of the Deflagration to Detonation tTransition in Primary Explosives. Cent. Eur. J. Energ. Mater. 2012, 9(1): 17-38.
  • [38] Sáenz J.A., Stewart D.S. Modeling Deflagration-to-Detonation Transition in Granular Explosive Pentaerythritol Tetranitrate. J. Appl. Phys. 2008, 104(4): 043519.
  • [39] Macek A. Transition from Deflagration to Detonation in Cast Explosives. J. Chem. Phys. 1959, 11(1): 162-167.
  • [40] Tarver C.M., Goodale T.C., Shaw R., Cowperthwaite M. Deflagration-to-Detonation Transition Studies for Two Potential Isomeric Cast Primary Explosives. 6th Symp. (Intern.) on Detonation, Coronado, CA, August 24-27, 1976, 231-249.
  • [41] Trzciński W.A. Modeling the Process of Transition from Combustion to Detonation in Solid Explosives. (in Polish) Biul. WAT 2010, 59(3): 41-60.
  • [42] Gifford M.J., Luebcke P.E., Field J.E. A New Mechanism for Deflagration-to-Detonation in Porous Granular Explosives. J. Appl. Phys. 1999, 86(3): 1749-1753.
  • [43] Thiruvengadathan R., Bezmelnitsyn A., Apperson S., Staley C., Redner P., Balas W., Gangopadhyay S. Combustion Characteristics of Novel Hybrid Nanoenergetic Formulations. Combust. Flame 2011, 158(5): 964-978.
  • [44] MIL-DTL-398D: RDX (Cyclotrimethylenetrinitramine). Amendment 1, Standard by Military Specifications and Standards, 1999.
  • [45] Elbasuney S. Novel Colloidal Nanothermite Particles (MnO2/Al) for Advanced Highly Energetic Systems. J. Inorg. Organomet. Polym. Mater. 2018, 28(5): 1793-1800.
  • [46] Elbasuney S., El-Sayyad G.S., Ismael S., Yehia M. Colloid Thermite Nanostructure: A Novel High Energy Density Material for Enhanced Explosive Performance. J. Inorg. Organomet. Polym. Mater. 2021, 31(2): 559-565.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f6865d44-141e-44ed-b7b8-f70cdcf3695a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.