PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Ultrafast potentiostat as compromise between current sensitivity vs. response time

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Ultraszybki potencjostat jako kompromis między czułościa prądową I czasem odpowiedzi
Języki publikacji
EN
Abstrakty
EN
Physical and technical problems of a potentiostat scheme are analyzed. Current sensitivity of the traditional potentiostat scheme is considered. The classical scheme of potentiostat was investigated to overcome the bounds of potentiostat perfection. The new scheme of ultrafast potentiostat is proposed, and its development principles are discussed. Improving potentiostat technical parameters such as response time, frequency bandwidth, stability, and potential range are clarified. Schematic simulation results and tests with a real electrochemical composition are shown.
PL
Analizowano techniczne I fizyczne problemy projektowania układu potencjostatu. Zaprojektowano nowy układ szybkiego potencjostatu biorąc pod uwagę czas odpowiedzi, pasmo częstotliwości i stabilność.
Rocznik
Strony
102--107
Opis fizyczny
Bibliogr. 27 poz., rys.
Twórcy
  • Department of Biomedical Engineering, Kharkiv National University of Radio Electronics, Nauky ave., 14, Kharkiv, Ukraine 61066
  • Department of Biomedical Engineering, Kharkiv National University of Radio Electronics, Nauky ave., 14, Kharkiv, Ukraine 61066
Bibliografia
  • [1] Robert J. Forster, 2.5 Miroelectrodes – Retrospect and Prospect, in: Encyclopedia of Electrochemistry, Vol.3, Instrumentation and Electroanalytical Chemistry, A.J. Bard, M. Stratmann, P. R. Unwin (Eds.), Wiley, New York, 2003, 170.
  • [2] C.P. Andrieux, D. Garreau, P. Hapiot, J. Pinson, J.M. Savéant, Fast sweep cyclic voltammetry at ultramicroelectrodes. Evaluation of the method for fast electrontransfer kinetic measurements, J. of Electroanal. Chem., 243 (1988) 321-335.
  • [3] C.P. Andrieux, D. Garreau, P. Hapiot, J.M. Savéant, Ultramicroelectrodes: cyclic voltammetry above one million V s−1, J. of Electroanal. Chem. and Interfacial Electrochem. 248(1988) 447-450.
  • [4] J.O. Howell , R.M. Wightman, Ultrafast voltammetry of anthracene and 9,10-diphenylanthracene . J. of Phys. Chem. 88 (1984) 3915-3918.
  • [5] C. Amatore, C. Lefrou, F. Pflüger, On-line compensation of ohmic drop in submicrosecond time resolved cyclic voltammetry at ultramicroelectrodes, J. of Electroanal. Chem. 270 (1989) 43-59.
  • [6] C. Amatore , C. Lefrou, New concept for a potentiostat for on-line ohmic drop compensation in cyclic voltammetry above 300 kV s-1. J. of Electroanal. Chem. 324 (1992) 33-58.
  • [7] C. Amatore, E. Maisonhaute, G. Simonneau, Ultrafast cyclic voltammetry: performing in the few megavolts per second range without ohmic drop, Electrochem. Commun., 2 (2000), 81-84.
  • [8] C. Amatore, E. Maisonhaute, G. Simonneau, Ohmic drop compensation in cyclic voltammetry at scan rates in the megavolt per second range: access to nanometric diffusion layers via transient electrochemistry, J. of Electroanal. Chem. 486 (2000) 141-155.
  • [9] P. Fortgang, C. Amatore, E. Maisonhaute, B. Schollhorn, Microchip for ultrafast voltammetry, Electrochem. Commun. 12 (2010) 897-900.
  • [10] Z. Guo, X. Lin , Ultrafast cyclic voltammetry at scan rates of up to 3 MV s−1 through a single-opamp circuit with positive feedback compensation of ohmic drop, J. of Electroanal. *Chem., 568 (2004) 45-53.
  • [11] Z. Y. Guo, X. Q. Lin, Ultrafast cyclic voltammetry with asymmetrical potential scan, Chin. Chem. Lett., 19(2008) 85-88.
  • [12] D.O. Wipf, R.M. Wightman, Submicrosecond measurements with cyclic voltammetry, Anal. Chem., 60 (1988) 2460-2464.
  • [13] R.M. Wightman, D.O. Wipf, High-speed cyclic voltammetry. Accounts of Chem. Res., 23 (1990) 64-70.
  • [14] C. Amatore, G. Farsang, E. Maisonhaute, P. Simon, Voltammetric investigation of the anodic dimerization of phalogenoanilines in DMF: Reactivity of their electrogenerated cation radicals, J. Electroanal. Chem., 462 (1999) 55-62.
  • [15] C. Amatore, Y. Bouret, E. Maisonhaute, J. I. Goldsmith, H. D. Abruña, Ultrafast voltammetry of adsorbed redox active dendrimers with nanometric resolution: An electrochemical microtome, ChemPhysChem, 2 (2001) 130-134.
  • [16] C. Amatore, Y. Bouret, E. Maisonhaute, J.I. Goldsmith, H.D. Abruña, Precise adjustment of nanometric-scale diffusion layers within a redox dendrimer molecule by ultrafast cyclic voltammetry: An electrochemical nanometric microtome, Chemistry - A European Journal, 10 (2001) 2206-2226.
  • [17] C. Amatore, Y. Bouret, E. Maisonhaute, H. D. Abruña, J.I. Goldsmith, Electrochemistry within molecules using ultrafast cyclic voltammetry, Comptes Rendus Chimie, 6 (2003), 99-115.
  • [18] N. V. Rees, O. V. Klymenko, E. Maisonhaute, B. A. Coles, R.G. Compton, The application of fast scan cyclic voltammetry to the high speed channel electrode, J. of Electroanal. Chem. 542 (2003) 23-32.
  • [19] Z. Guo, X. Lin, Kinetic studies of dioxygen and superoxide ion in acetonitrile at gold electrodes using ultrafast cyclic voltammetry, J. of Electroanal. Chem., 576 (2005) 95-103.
  • [20] C.A. Amatore , A. Jutand, F. Pflüger, Nanosecond time resolved cyclic voltammetry: Direct observation of electrogenerated intermediates with bimolecular diffusion controlled decay using scan rates in the megavolt per second range, J. of Electroanal. Chem. and Interfacial Electrochem., 218 (1987) 361-365.
  • [21] C. Amatore, Chap. 4. Electrochemistry at Microelectrodes, in: Physical Electrochemistry: Principles, Methods and Applications, I. Rubinstein (Ed.), Marcel Dekker, New York, 1995, 131–208.
  • [22] Amatore, C., Maisonhaute, E., Nierengarten, J.-F., Schöllhorn, B. Direct Monitoring of Ultrafast Redox Commutation at the Nanosecond and Nanometer Scales by Ultrafast Voltammetry: From Molecular Wires to Cation Releasing Systems, Israel J. of Chem., 48 (2008) 203-214.
  • [23] Zhou, X.-S., Liu, L., Fortgang, P., Lefevre, A.-S., Serra-Muns, A., Raouafi, N., Amatore, C., Mao, B.-W., Maisonhaute, E., Schöllhorn, B. Do molecular conductances correlate with electrochemical rate constants? Experimental insights, JACS, 133 (2011), 7509-7516.
  • [24] C. Amatore, E. Maisonhaute, B. Schçllhorn, J. Wadhawan, Ultrafast voltammetry for probing interfacial electron transfer in molecular wires, ChemPhysChem. 8 (2007) 1321–1329.
  • [25] A. J. Bard & L.R. Faulkner Chap. 15 Electrochemical instrumentation, in: A. J. Bard & L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications, John Wiley & Sons, Inc., New York, 2000, 632-658.
  • [26] D. Wipf, Chap. 1.2 Analog and Digital Instrumentation, in: Vol.3, Instrumentation and Electroanalytical Chemistry, A.J. Bard, M. Stratmann, P. R. Unwin (Eds.), Wiley, New York, 2003, p. 24-50.
  • [27] J. Dostal, Operational Amplifier, Sec. Eds., Butterworth-Heinemann, 1993.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f685371c-ac17-478a-aa24-a1c8ecc715c3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.