PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Methods for assessing the technical condition of bearing hubs in means of transport

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article presents two methods of testing bearing hubs, which may supplement the existing subjective and unreliable methods of diagnostics of rolling bearings used in wheel bearing hubs of motor vehicles and other means of road transport. One of the most important elements responsible for the safety of a vehicle is the bearing hub. Regular monitoring of the technical condition of bearings should become an obligation at vehicle inspection stations when carrying out a technical inspection of a vehicle, authorising it to travel on public roads. This article presents the results of vehicle tests with signs of damage to rolling bearings, using two test stands: one on which the dynamic balancer acted as a device for accelerating the wheel, and the other, which was designed as a test dedicated to automotive rolling bearings, where a dynamic weighbridge was used as the wheel drive, made it impossible to test the wheel at lower rotational speeds. The newly designed and manufactured bearing testing device eliminates the disadvantages of the previous stand, and additionally, enables the measurement of a fully loaded bearing hub, which enables the simulation of real operating conditions on the bearing hub.
Rocznik
Tom
Strony
191--204
Opis fizyczny
Bibliogr. 24 poz.
Twórcy
  • Faculty of Transport and Aviation Engineering, The Silesian University of Technology, Krasińskiego 8 Street, 40-019 Katowice, Poland
  • Faculty of Transport and Aviation Engineering, The Silesian University of Technology, Krasińskiego 8 Street, 40-019 Katowice, Poland
  • Faculty of Transport and Aviation Engineering, The Silesian University of Technology, Krasińskiego 8 Street, 40-019 Katowice, Poland
  • Budapest University of Technology and Economics, Faculty of Transportation Engineering and Vehicle Engineering, Department of Transport Technology and Economics, Műegyetem rakpart 3, 1111, Budapest, Hungary
Bibliografia
  • 1. Randall Robert. 2011. Vibration-based Condition Monitoring: Industrial, Aerospace and Automotive Applications. Chichester: Wiley. ISBN: 978-0-470-74785-8.
  • 2. Chiliński Bartosz. 2014. “The proposal of the bearing arrangement to work in a swinging motion”. Mechanical Overview 1 (14): 15-18. ISSN 2354-0192.
  • 3. Figlus Tomasz. 2019. “A Method for Diagnosing Gearboxes of Means of Transport Using Multi-Stage Filtering and Entropy”. Entropy 21(5): 1-13. ISSN 1099-4300.
  • 4. Batko Wojciech, Mikulaski Andrzej. 2002. „The use of wavelet methods in the vibroacoustic monitoring systems of the hoisting device bearing”. Diagnostyka 26: 7-12. ISSN 2449-5220.
  • 5. Cioch Witold, Oskar Knapik, Jacek Leśkow. 2013. “Finding a frequency signature for a cyclostationary signal with applications to wheel bearing diagnostics”. Mechanical Systems and Signal Processing 38(1): 55–64. ISSN 0888- 3270.
  • 6. Dąbrowski Zbigniew, Jacek Dziurdź. 2007. “New concept of using coherence function in digital signal analysis”. Machine Dynamics Problems 31(3): 25-31. ISSN 0239-7730.
  • 7. Deuszkiewicz Piotr, Stanislaw Radkowski. 2003. “On-line condition monitoring of a power transmission unit of a rail vehicle”. Mechanical System and Signal Processing 17(6): 1321-1334. ISSN 0888- 3270.
  • 8. Engel Zbigniew. 1981. Vibrations in technology. Wrocław: The Ossoliński National Institute. ISBN 83-04-00646-4.
  • 9. Junsheng Cheng, Yu Dejie, Yang Yu. 2007. “Application of an impulse response wavelet to fault diagnosis of rolling bearings”. Mechanical Systems and Signal Processing 27(2): 920-929. ISSN 0239-7730.
  • 10. Zhou Tong, Yuan Li, Yijia Jing , Yifei Tong. 2021. “Bearing Fault Identification Based on Deep Convolution Residual Network”. Mechanika 27(3): 229-236. ISSN: 1392-1207.
  • 11. Wang Jingyue, Haotian Wang, Lixin Guo, Diange Yang. 2018. “Rolling bearing fault detection using autocorrelation based morpho-logical filtering and empirical mode decomposition”. Mechanika 24(6): 817-823. ISSN: 1392-1207.
  • 12. Bensana T., S. Mekhilef. 2016. “Numerical and experimental analysis of vibratory signals for rolling bearing fault diagnosis”. Mechanika 22(3): 217-224. ISSN: 1392-1207.
  • 13. Czech Piotr. 2011. „Diagnosing of disturbances in the ignition system by vibroacoustic signals and radial basis function - preliminary research”. Communications in Computer and Information Science 239: 110-117. DOI: https://doi.org/10.1007/978-3-642-24660-9_13. Springer, Berlin, Heidelberg. ISBN: 978-3-642-24659-3. ISSN: 1865-0929. In: Mikulski Jerzy (eds), Modern transport telematics, 11th International Conference on Transport Systems Telematics, Katowice Ustron, Poland, October 19-22, 2011.
  • 14. Czech Piotr. 2013. „Intelligent Approach to Valve Clearance Diagnostic in Cars”. Communications in Computer and Information Science 395: 384-391. DOI: https://doi.org/10.1007/978-3-642-41647-7_47. Springer, Berlin, Heidelberg. ISBN: 978-3-642-41646-0; 978-3-642-41647-7. ISSN: 1865-0929. In: Mikulski Jerzy (eds), Activities of transport telematics, 13th International Conference on Transport Systems Telematics, Katowice Ustron, Poland, October 23-26, 2013.
  • 15. Czech Piotr. 2013. „Diagnosing a car engine fuel injectors' damage”. Communications in Computer and Information Science 395: 243-250. DOI: https://doi.org/10.1007/978-3-642-41647-7_30. Springer, Berlin, Heidelberg. ISBN: 978-3-642-41646-0; 978-3-642-41647-7. ISSN: 1865-0929. In: Mikulski Jerzy (eds), Activities of transport telematics, 13th International Conference on Transport Systems Telematics, Katowice Ustron, Poland, October 23-26, 2013.
  • 16. Graževičiūtė J., I. Skiedraitė, V. Jūrėnas, A. Bubulis, V. Ostaševičius. 2008. „Applications of high frequency vibrations for surface milling”. Mechanika 1: 46-49.
  • 17. Ubartas M., V. Ostaševičius, S. Samper, V. Jūrėnas, R. Daukševičius. 2011. „Experimental investigation of vibrational drilling”. Mechanika 4: 368-373.
  • 18. Ostaševičius V., V. Jurėnas, M. Žukauskas. 2014. „Investigation of energy harvesting from high frequency cutting tool vibrations”. Mechanika 5: 500-505.
  • 19. Raymond A. Guyer. 1996. Rolling Bearings Handbook and Troubleshooting Guide, Ohio: Taylor & Francis. ISBN 97-80-801988-714.
  • 20. Radkowski Stanislaw. 2008. “Vibro-acoustic diagnostics of low-energy stage of failures evolution”, Proceedings of the Institution of Mechanical Engineers Part G Journal of Aerospace Engineering 223: 589-597. ISSN 0954-4100.
  • 21. Stanik Zbigniew. 2013. Diagnosing rolling bearings of motor vehicles with vibroacoustic methods. Radom: Scientific Publisher of the Institute of Sustainable Technologies - National Research Institute. ISBN 978-83-7789-204-6.
  • 22. Cempel Czesław. 1978. Applied vibroacoustics. Warszawa: PWN. ISBN 83-01-09034-0.
  • 23. Maláková Silvia, Matej Urbanský, Gabriel Fedorko, Vieroslav Molnár, Samuel Sivak. 2021. „Design of geometrical parameters and kinematical characteristics of a non-circular gear transmission for given parameters”. Applied Sciences 11(3): 1-23. ISSN: 2076-3417.
  • 24. Maláková Silvia, Michal Puškár, Peter Frankovský, Samuel Sivák, Maroš Palko, Miroslav Palko. 2020. „Meshing Stiffness - A Parameter Affecting the Emission of Gearboxes”. Applied Sciences 10(3): 1-12. ISSN: 2076-3417.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f67e7713-a0e3-4e08-9bb2-62b27b141d6e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.