PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Some aspects of the determination of retained austenite using the Rietveld refinement

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The aim of the paper is to show the advantage of the application of the Rietveld refinement for determination of retained austenite amount in multiphase microstructure steels. Design/methodology/approach: The steels used for the investigation were thermomechanically rolled and controlled cooled to room temperature. The investigation of the microstructure was carried out using light microscopy. X-ray diffraction investigations of analyzed steel were a major part of the research. The phase identification and quantitative analysis of retained austenite were done using the HighScore Plus software that includes the Rietveld refinement method. The Rietveld analysis takes into account the preferred orientation that occurs during thermo-mechanical processing of steel. Findings: It was found that after the thermo-mechanical processing the microstructure of steel is composed of fine-grained bainitic matrix which includes bainite-austenite constituents, martensite blocks and some fraction of retained austenite. The X-ray diffraction showed that this steel includes phases of Feα (bainite and martensite) and Feγ (retained austenite). The Rietveld analysis showed that the volume fraction of retained austenite is 14.1%. Research limitations/implications: To confirm that Rietveld refinement method is a good tool for the quantitative analysis of retained austenite volume fraction EBSD measurements should be done for comparison purposes. Practical implications: The obtained results can be used for determination of retained austenite fraction in AHSS steels. It is important because the retained austenite content and its mechanical stability decide about a formability level of these steel grades. Originality/value: Some methodological aspects are concerned affecting the final quantitative results of retained austenite volume fraction is AHSS.
Rocznik
Strony
11--17
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
autor
  • Division of Constructional and Special Materials, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
Bibliografia
  • [1] J. Kowalska, W. Ratuszek, M. Witkowska, A. Zielińska-Lipiec, T. Tokarski, Microstructure and texture characteristics of the metastable Fe-21Mn-3Si3Al alloy after cold deformation, Journal of Alloys and Compounds 643 (2015) S39-S45.
  • [2] L.A. Dobrzański, W. Borek, Hot deformation and recrystallization of advanced high-manganese austenitic TWIP steels, Journal of Achievements in Materials and Manufacturing Engineering 46/1 (2011) 71-78.
  • [3] S. Lasek, E. Mazancova, Influence of thermal treatment on structure and corrosion properties of high manganese TRIPLEX steels, Metalurgija 52/4 (2013) 441-444.
  • [4] A. Grajcar, S. Kołodziej, W. Krukiewicz, Corrosion resistance of high-manganese austenitic steels, Archives of Materials Science and Engineering 41/2 (2010) 77-84.
  • [5] M. Jabłońska, A. Śmiglewicz, A study of mechanical properties of high manganese steels after different rolling conditions, Metalurgija 54/4 (2015) 619-622.
  • [6] L.A. Dobrzański, W. Borek, J. Mazurkiewicz, Influence of thermo-mechanical treatments on structure and mechanical properties of high-Mn steel, Advanced Materials Research 1127 (2015) 113-118.
  • [7] A. Grajcar, M. Różański, S. Stano, A. Kowalski, Microstructure characterization of laser-welded Nbmicroalloyed silicon-aluminum TRIP steel, Journal of Materials Engineering and Performance 23/9 (2014) 3400-3406.
  • [8] L.A. Dobrzański, W. Borek, J. Mazurkiewicz, Mechanical properties of high-Mn austenitic steels tested under static and dynamic conditions, Archives of Metallurgy and Materials 61/2 (2016) 725-730.
  • [9] A. Kokosza, J. Pacyna, Influence of austenitising temperature on kinetics of phase transformations in medium carbon TRIP steel, Materials Science and Technology 31/7 (2015) 803-807.
  • [10] M. Jabłońska, A. Śmiglewicz, Analysis of substructure of high-Mn steels in the context of dominant stress mechanism, Defect and Diffusion Forum 334 (2013) 177-181.
  • [11] L. Kucerova, H. Jirkova, B. Masek, The effect of alloying on mechanical properties of advanced high strength steels, Archives of Metallurgy and Materials 59/3 (2014) 1189-1192.
  • [12] A. Grajcar, H. Krztoń, Effect of isothermal bainitic transformation temperature on retained austenite fraction in C-Mn-Si-Al-Nb-Ti TRIP-type steel, Journal of Achievements in Materials and Manufacturing Engineering 35/2 (2009) 169-176.
  • [13] A. Grajcar, H. Krztoń, Effect of isothermal holding temperature on retained austenite fraction in mediumcarbon Nb/Ti-microalloyed TRIP steel, Journal of Achievements in Materials and Manufacturing Engineering 49/2 (2011) 391-399.
  • [14] A. Grajcar, W. Kwaśny, Microstructural study on retained austenite in advanced high-strength multiphase 3Mn-1.5Al and 5Mn-1.5Al steels, Journal of Achievements in Materials and Manufacturing Engineering 54/2 (2012) 168-177.
  • [15] J. Krawczyk, P. Bała, J. Frąckowiak, The Mossbauer spectroscopy studies of retained austenite, Archives of Materials Science and Engineering 28/10 (2007) 633-636.
  • [16] J.E. Blendell, M.D. Vaudin, E.R. Fuller Jr, Determination of texture from individual grain orientation measurements, Journal of the American Ceramic Society 82 (2004) 3217-3220.
  • [17] T. Goryczka, G. Dercz, L. Pająk, E. Łągiewka, Lattice and peak profile parameters in GIXD technique, Solid State Phenomena 130 (2007) 281-286.
  • [18] T. Rzychoń, A. Kiełbus, G. Dercz, Structure refinement of the multi-phase Mg-Al-Sr alloy, Solid State Phenomena 163 (2010) 169-172.
  • [19] L.B. McCusker, R.B. Von Dreele, D.E. Cox, D. Louer, P. Scardi, Rietveld refinement guidelines, Journal of Applied Crystallography 32 (1999) 36-50.
  • [20] A. Grajcar, P. Skrzypczyk, D. Woźniak, S. Kołodziej, Semi-industrial of hot rolling and controlled cooling of Mn-Al TRIP steel sheets, Journal of Achievements in Materials and Manufacturing engineering 57 (2013) 38-47.
  • [21] Y. Wang, K. Zhang, Z. Guo, N. Chen, Y. Rong, A new effect of retained austenite on ductility enhancement in high strength bainitic steel, Materials Science and Engineering A 552 (2012) 288-294.
  • [22] A. Grajcar, P. Skrzypczyk, D. Woźniak, Thermomechanically rolled medium-Mn steels containing retained austenite, Archives of Metallurgy and Materials 59 (2014) 1691-1697.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f67e311f-a49c-4bd6-aa3b-6eb6b2445073
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.