PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The microbiome of peatland plants : literature review

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aggregate of various taxonomic groups of microorganisms colonising living organisms is known as the microbiome. The plant microbiome encompasses a wide network of biological, chemical and metabolic interactions between the plant and microorganisms (mainly algae, bacteria and protozoa). The relationships between microbes and peatland plants, particularly carnivorous plants, are a very interesting subject that is still little understood. Microbes colonising carnivorous peatland plants may be present in their traps or on the surface of the plant. Previous research on the relationships between the microbiome composition of carnivorous plants and the external factors influencing it directly and indirectly is still inadequate. There is a lack of review articles analysing the current state of knowledge regarding carnivorous plant-microbiome interactions. This review of the literature is a collection of data on the functioning of the microbiome of carnivorous plants growing in peatland ecosystems. In addition, it summarises the available information on host–microorganism relationships.
Wydawca
Rocznik
Tom
Strony
25--34
Opis fizyczny
Bibliogr. 77 poz., rys., tab.
Twórcy
  • University of Life Sciences, Department of Hydrobiology and Protection of Ecosystems, Dobrzańskiego 37, 20-262 Lublin, Poland
  • University of Life Sciences, Department of Hydrobiology and Protection of Ecosystems, Dobrzańskiego 37, 20-262 Lublin, Poland
Bibliografia
  • Adamec, L. (1997) “Mineral nutrition of carnivorous plants: A review,” The Botanical Review, 63, pp. 273–299. Available at: https://doi.org/10.1007/BF02857953.
  • Adamec, L. (2007) “Oxygen concentrations inside the traps of the carnivorous plants Utricularia and Genlisea (Lentibulariaceae),” Annals of Botany, 100, pp. 849–856. Available at: https://doi.org/10.1093/aob/mcm182.
  • Adamec, L. (2008) “Soil fertilization enhances growth of the carnivorous plant Genlisea violacea,” Biologia, 63(2), pp. 201–203. Available at: https://doi.org/10.2478/s11756-008-0023-1.
  • Adamec, L. (2011) “Functional characteristics of traps of aquatic carnivorous, Utricularia species,” Aquatic Botany, 3, pp. 226–233. Available at: https://doi.org/10.1016/j.aquabot.2011.07.001.
  • Adamec, L. et al. (2010) “Enzyme production in the traps of aquatic Utricularia species,” Biologia, 65, pp. 273–278. Available at: https://doi.org/10.2478/s11756-010-0002-1.
  • Adamec, L. and Kondo, K. (2002) “Optimization of medium for growing the aquatic carnivorous plant Aldrovanda vesiculosa in vitro,” Plant Biotechnology Journal, 19, pp. 283–286. Available at: https://doi.org/10.5511/plantbiotechnology.19.283.
  • Adamek, Ł. (2011) “The comparison of mechanically stimulated and spontaneous firings in traps of aquatic carnivorous Utricularia species,” Aquatic Botany, 94, pp. 44–49. Available at: https://doi.org/10.1016/j.aquabot.2010.09.004.
  • Adllassnig, W. et al. (2005) “The roots of carnivorous plants,” Plant and Soil, 274, pp. 127–140. Available at: https://doi.org/10.1007/s11104-004-2754-2.
  • Adlassnig, W. et al. (2010) “The North American carnivorous plant Sarracenia in Europe,” Phyton. Annales Rei Botanicae, 49, pp. 279–292.
  • Adllasnig, W. et al. (2012) “Endocytotic uptake of nutrients in carnivorous plants,” The Plant Journal, 77, pp. 303–313. Available at: https://doi.org/10.1111/j.1365-313X.2012.04997.x.
  • Adlassnig, W., Peroutka, M. and Lendl, T. (2011) “Traps of carnivorous pitcher plants as a habitat: Composition of the fluid, biodiversity and mutualistic activities,” Annals of Botany, 107, pp. 181–194. Available at: https://doi.org/10.1093/aob/mcq238.
  • Alkhalaf, I.A., Hübener, T. and Porembski, S. (2009) “Prey spectra of aquatic Utricularia species (Lentibulariaceae) in northeastern Germany: The role of planktonic algae,” Flora: Morphology, Distribution, Functional Ecology of Plants, 204(9), pp. 700–708. Available at: https://doi.org/10.1016/j.flora.2008.09.008.
  • Amesbury, M.J. (2016) “Development of a new pan-European testate amoeba transfer function for reconstructing peatland palaeohydrology,” Quaternary Science Review, 152, pp. 132–151. Available at: https://doi.org/10.1016/j.quascirev.2016.09.024.
  • Azam, F. (1998) “Microbial control of oceanic carbon flux: The plot thickens,” Science, 280, pp. 694–696. Available at: https://doi.org/10.1126/science.280.5364.694.
  • Barthlotta, W. et al. (2004) Karnivoren – Biologie und Kultur fleischfressender Pflanzen [Biology and culture of carnivorous plants]. Ulmer: Stuttgart.
  • Basińska, M. et al. (2020) “Experimental warming and precipitation reduction affect the biomass of microbial communities in a Sphagnum peatland,” Ecological Indicators, 112, 106059. Available at: https://doi.org/10.1016/j.ecolind.2019.106059.
  • Berg, G. et al. (2014) “Unraveling the plant microbiome: Looking back and future perspectives,” Frontiers in Microbiology, 5, 148, pp. 1–7. Available at: https://doi.org/10.3389/fmicb.2014.00148.
  • Bittleston, L.S. et al. (2018) “Convergence between the microcosms of Southeast Asian and North American pitcher plants,” eLife, 7, e36741. Available at: https://doi.org/10.7554/eLife.36741.
  • Boeye, D., Haesebroeck van, V. and Verheyenr, F. (2009) “Nutrient limitation in species-rich lowland fens,” Journal of Vegetation Science, 8, pp. 415–424. Available at: https://doi.org/10.2307/3237333.
  • Bradshaw, A.D. (1983) “The reconstruction of ecosystems,” Journal of Applied Ecology, 20, pp. 1–17. Available at: https://doi.org/10.2307/2403372.
  • Brix, H. and Sorrell, B.K. (1996) “Oxygen stress in wetland plants: Comparison of de-oxygenated and reducing root environments,” Functional Ecology, 10(4), pp. 521–526. Available at: https://doi.org/10.2307/2389945.
  • Buosi, G.M. et al. (2011) “Ciliate community associated with aquatic macrophyte roots: Effects of nutrient enrichment on the community composition and species richness,” European Journal of Protistology, 47, pp. 86–112. Available at: https://doi.org/10.1016/j.ejop.2011.02.001.
  • Cameron, D.D. et al. (2007) “Mycorrhizal acquisition of inorganic phosphorus,” Annals of Botany, 99(5), pp. 831–834. Available at: https://doi.org/10.1093/aob/mcm018.
  • Canter, E.J. et al. (2018) “Predator identity more than predator richness structures aquatic microbial assemblages in Sarracenia purpurea leaves,” Ecology, 99, pp. 652–660. Available at: https://doi.org/10.1002/ecy.2128.
  • Chróst, R.J. et al. (2009) “Abundance and structure of microbial loop components (bacteria and protists) in lakes of different trophic status,” Journal of Microbiology and Biotechnology, 19, pp. 858–868.
  • Cronk, J.K. and Fennessey S.M. (2001) Wetland plants biology and ecology. Vol. 1. Boca Raton: CRS Press.
  • Diggelen van, R. et al. (2006) “Fens and floodplains of the tempera te zone: Present status, threats, conservation and restoration,” Applied Vegetation Science, 9, pp. 157–162. Available at: https://doi.org/10.1111/j.1654-109X.2006.tb00664.x.
  • Ellison, A.M. et al. (2021) “Regulation by the pitcher plant Sarracenia purpurea of the structure of its inquiline food web,” The American Midland Naturalist Journal, 186, pp. 1–15. Available at: https://doi.org/10.1674/0003-0031-186.1.1.
  • Flessa, H. et al. (2002) “Nitrous oxide and methane fluxes from organic soils under agriculture,” European Journal of Soil Science, 4, pp. 327–335. Available at: https://doi.org/10.1046/j.1365-2389.1998.00156.x.
  • Freedman, Z.B. et al. (2021) “Environment–host–microbial interactions shape the Sarracenia purpurea microbiome at the continental scale,” Ecology, 102(5), e03308. Available at: https://doi.org/10.1002/ecy.3308.
  • Friday, L.E. (1989) “Rapid turnover of traps in Utricularia vulgaris L.,” Oecologia, 80, pp. 272–277. Available at: https://doi.org/10.1007/BF00380163.
  • Gebühr, C. et al. (2006) “Development of microalgae communities in the Phytotelmata of allochthonous populations of Sarracenia purpurea (Sarraceniaceae),” Plant Biology, 8(6), pp. 849–60. Available at: https://doi.org/10.1055/s-2006-924474.
  • Giang, T. et al. (2015) “Metatranscriptome analysis reveals host-microbiome interactions in traps of carnivorous Genlisea species,” Frontiers in Microbiology, 6, 526. Available at: https://doi.org/10.3389/fmicb.2015.00526.
  • Gotelli, N.J. and Ellison, A.M. (2006) “Food-web models predict species abundances in response to habitat change,” PLOS Biology, 4(10), e324. Available at: https://doi.org/10.1371/journal.pbio.0040324.
  • Gray, S.M. (2012) “Succession in the aquatic Sarracenia purpurea community: Deterministic or driven by contingency?,” Aquatic Ecology, 46, pp. 487–499. Available at: https://doi.org/10.1007/s10452-012-9417-9.
  • Gray, S.M. et al. (2012) “The bacterial composition within the Sarracenia purpurea model system: Local scale differences and the relationship with the other members of the food web,” Plos One, 7(12), e50969. Available at: https://doi.org/10.1371/journal.pone.0050969.
  • Grotjahn, R., et al. (2015) “North American extreme temperature events and related large scale meteorological patterns: A review of statistical methods, dynamics, modeling, and trends,” Climate Dynamics, 45, pp. 1151–1184. Available at: https://doi.org/10.1007/s00382-015-2638-6.
  • Grotjahn, J.J. and Young, E.B. (2019) “Diverse microbial communities hosted by the model carnivorous pitcher plant Sarracenia purpurea: Analysis of both bacterial and eukaryotic composition across distinct host plant populations,” PeerJ, 7, e6392. Available at: https://doi.org/10.7717/peerj.6392.
  • Grotjahn, J. and Young, E. (2022) “Bacterial recruitment to carnivorous pitcher plant communities: Identifying sources influencing plant microbiome composition and function,” Frontiers in Microbiology, 13, 791079. Available at: https://doi.org/10.3389/fmicb.2022.791079.
  • Güsewell, S. and Edwards, P. (1999) “Shading by Phragmites australis: A threat for species-rich fen meadows?,” Applied Vegetation Science, 2, pp. 61–70. Available at: https://doi.org/10.2307/1478882.
  • Hobbie, S.E. (1996) “Temperature and plant species control over litter decomposition in Alaskan tundra,” Ecological Monographs, 66, pp. 503–522. Available at: https://doi.org/10.2307/2963492.
  • Koopman, M.M. et al. (2010) “The carnivorous pale pitcher plant harbors diverse, distinct, and time-dependent bacterial communities,” Applied and Environmental Microbiology, 76, pp. 1851–1860. Available at: https://doi.org/10.1128/AEM.02440-09.
  • Kotowski, W., Diggelen van, R. (2004) “Light as environmental filter in vegetation,” Journal of Vegetation Science, 15, pp. 583–594. Available at: https://doi.org/10.1658/1100-9233(2004)015[0583:LAAEFI]2.0.CO;2.
  • Krasuska, U., Glinka, A. and Gniazdowska, A. (2012) “Menu roślin mięsożernych [Carnivorous plant menu],” Kosmos. Problemy Nauk Biologicznych, 61(4), pp. 635–646. Available at: http://kosmos.icm.edu.pl/PDF/2012/635.pdf (Accessed: January 02, 2023).
  • Lambers, H. (2006) “Root structure and functioning for efficient acquisition of phosphorus: Matching morphological and physiological traits,” Annals of Botany, 98, pp. 693–713. Available at: https://doi.org/10.1093/aob/mcl114.
  • Mars de, H. and Wassen, M.J. (1999) “Redox potentials in relation to water levels in different mire types in the Netherlands and Poland,” Plant Ecology, 140, pp. 41–51. Available at: https://doi.org/10.1023/A:1009733113927.
  • Mieczan, T. and Bartkowska, A. (2022) “The effect of experimentally simulated climate warming on the microbiome of carnivorous plants – A microcosm experiment,” Global Ecology and Conservation, 34, e02040. Available at: https://doi.org/10.1016/j.gecco.2022.e02040.
  • Mieczan, T. et al. (2015) “Eutrophication of peatbogs: Consequences of P and N enrichment for microbial and metazoan communities in mesocosm experiments,” Aquatic Microbial Ecology, 74, pp. 121–141. Available at: https://doi.org/10.3354/ame01727.
  • Mitsch, W.J. and Gosselink, J.G. (2009) Wetlands ecosystems. Vol. 1. Hoboken: Wiley.
  • Mouquet, N., Moore, J.L. and Loreau, M. (2002) “Plant species richness and community productivity: Why the mechanism that promotes coexistence matters,” Ecology Letters, 5 pp. 56–65. Available at: https://doi.org/10.1046/j.1461-0248.2002.00281.x.
  • Newell, S. and Nastase, S. (1998) “Efficiency of insect capture by Sarracenia purpurea (Sarraceniaceae), the northern pitcher plant,” American Journal of Botany, 85(1), pp. 88–91.
  • Olde Venterink, H. et al. (2003) “Species richness-productivity patterns differ between N-, P-, and K-limited wetlands,” Ecology, 84, pp. 2191–2199.
  • Paisie, T.K., Miller, T.E. and Mason, O.U. (2014) “Effects of a ciliate protozoa predator on microbial communities in pitcher plant (Sarracenia purpurea) leaves,” PLoS One, 9(11), e113384. Available at: https://doi.org/10.1371/journal.pone.0113384.
  • Parish, F. et al. (eds.) (2008) Assessment on peatlands, biodiversity and climate change: Main report. Kuala Lumpur: Global Environment Centre, Wageningen: Wetlands International.
  • Pawlikowski, P. et al. (2003) “Nitrogen:phosphorus ratio as the main ecological determinant of the differences in the species composition of brown-moss rich fens in north-eastern Poland,” Preslia, 85, pp. 349–367. Available at: https://www.preslia.cz/article/pdf?id=134 (Accessed: January 03, 2023).
  • Peroutka, M. et al. (2008) “Utricularia: A vegetarian carnivorous plant? Algae as prey of bladderwort in oligotrophic bogs,” Plant Ecology, 199(2), pp. 153–162. Available at: https://doi.org/10.1007/S11258-008-9420-3.
  • Peterson, C.N. et al. (2008) “Keystone predator controls bacterial diversity in the pitcher-plant Sarracenia purpurea) microecosystem,” Environmental Microbiology, 10(9), pp. 2257–2266. Available at: https://doi.org/10.1111/j.1462-2920.2008.01648.x.
  • Phoenix, G.K. et al. (2006) “Atmospheric nitrogen deposition in Word biodiversity hotspots: The need for a greater global perspective in assessing N deposition impacts,” Global Change Biology, 12, pp. 470–476. Available at: https://doi.org/10.1111/j.1365-2486.2006.01104.X.
  • Płachno, B.J., Adamec, L. and Huet, H. (2009) “Mineral nutrient uptake from prey and glandular phosphatase activity as a dual test of carnivory in semi-desert plants with glandular leaves suspected of carnivory,” Annals of Botany, 104, pp. 649–654. Available at: https://doi.org/10.1093/aob/mcp155.
  • Płachno B., Adamec, L. and Kamińska, I. (2015) “Relationship between trap anatomy and function in Australian carnivorous bladderworts (Utricularia) of the subgenus Polypompholyx,” Aquatic Botany, 120, pp. 290–296. Available at: https://doi.org/10.1016/j.aquabot.2014.09.008.
  • Płachno, B.J. et al. (2012) “Aging of Utricularia traps and variability of microorganisms associated with that microhabitat,” Aquatic Botany, 97, pp. 101–110. Available at: https://doi.org/10.1093/acprof:oso/9780198528722.001.0001.
  • Richards, J.H. (2001) “Bladder function in Utricularia purpurea (Lentibulariaceae): Is carnivory important?,” American Journal of Botany, 88, pp. 170–176. Available at: https://doi.org/10.2307/2657137.
  • Rinke, C. et al. (2013) “Insights into the phylogeny and coding potential of microbial dark matter,” Nature, 499, pp. 431–437. Available at: https://doi.org/10.1038/nature12352.
  • Robson, T.M. et al. (2005) “SOLAR UV-B influences microfaunal community composition in a Tierra del Fuego peatland,” Soil Biology and Biochemistry, 37, pp. 2205–2215. Available at: https://doi.org/10.1016/j.soilbio.2005.04.002.
  • Rydin, H. and Jeglum, J.K. (2006) The biology of peatlands. Biology of habitats. 1 st edn. Oxford: Oxford Academic. Available at: https://doi.org/10.1093/acprof:oso/9780198528722.001.0001
  • Rydin, H. and Jeglum, J.K. (2013) The biology of petlands. Biology of habitats. 2 nd edn. Oxford: Oxford Academic. Available at: https://doi.org/10.1093/acprof:osobl/9780199602995.001.0001.
  • Šimek, K. et al. (2017) “Ecological traits of the algae-bearing Tetrahymena utriculariae (Ciliophora) from traps of the aquatic carnivorous plant Utricularia reflexa,” Journal Eukaryotic Microbiology, 64, pp. 336–348. Available at: https://doi.org/10.1111/jeu.12368.
  • Siragusa, A.J., Swenson, J.E. and Casamatta, D.A. (2007) “Culturable bacteria present in the fluid of the hooded-pitcher plant Sarracenia minor based on 16S rDNA gene sequence data,” Microbial Ecology, 54, pp. 324–331. Available at: https://doi.org/10.1007/s00248-006-9205-y.
  • Sirová, D., Adamec, L. and Vrba, J. (2003) “Enzymatic activities in traps of four aquatic species of the carnivorous genus Utricularia,” New Phytologist, 159, pp. 669–675. Available at: https://doi.org/10.1046/j.1469-8137.2003.00834.x.
  • Sirová, D. et al. (2009) “Microbial community development in the traps of aquatic Utricularia species,” Aquatic Botany, 90, pp. 129–136. Available at: https://doi.org/10.1016/j.aquabot.2008.07.007.
  • Sirová, D. et al. (2010) “Utricularia carnivory revisited: Plants supply photosynthetic carbon to traps,” Journal of Experimental Botany, 61, pp. 99–103. Available at: https://doi.org/10.1093/jxb/erp286.
  • Sirová, D. et al. (2011) “Ecological implications of organic carbon dynamics in the traps of aquatic carnivorous Utricularia plants,” Functional Plant Biology, 38, pp. 583–593. Available at: https://doi.org/10.1071/FP11023.
  • Sirovà, D. et al. (2018) “Hunters or farmers? Microbiome characteristics help elucidate the diet composition in an aquatic carnivorous plant,” Microbiome, 6, 225. Available at: https://doi.org/10.1186/s40168-018-0617-y.
  • Studnicka, M. (2003) “Observations on life strategies of Genlisea, Heliamphora, and Utricularia in natural habitats,” Carnivorous Plant Newsletter, 32, pp. 57–61. Available at: https://cpn.carnivorousplants.org/articles/CPNv32n2p57_61.pdf (Accessed: January 04, 2023).
  • Sydenham, P.H. and Findlay, G.P. (1973) “The rapid movement of the bladder of Utricularia sp.,” Australian Journal of Biological Sciences, 26, pp. 1115–1126. Available at: https://www.publish.csiro.au/bi/pdf/bi9731115 (Accessed: January 04, 2023).
  • Vincent, O. et al. (2011) “Ultra-fast underwater suction traps,” Proceedings of the Royal Society B: Biological Sciences, 278 (1720) pp. 2909–2914. Available at: https://doi.org/10.1098/rspb.2010.2292.
  • Zak, D. (2010) “Phosphorus mobilization in rewetted fens: The effect of altered peat properties and implications for their restoration,” Ecological Applications. Ecological Society of America, 20, pp. 1336–1349. Available at: https://doi.org/10.1890/08-2053.1.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f67b9f56-1771-4057-90d1-944896bd3783
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.