PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimization of microstructured fibers with germanium-doped core for broad normal dispersion range

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We have numerically studied different designs of technologically feasible microstructured fibers with a germanium-doped core in order to obtain normal dispersion reaching possibly far in the mid infrared. Hexagonal, Kagome and the combination of both geometries were numerically examined with respect to different constructional parameters like pitch distance, filling factor of air holes, number of layers surrounding the core, and level of germanium doping in the core. Our analysis showed that the broadest range of normal dispersion reaching 2.81 μm, while keeping an effective mode area smaller than 30 μm², was achieved for a hexagonal lattice and a 40 mol% GeO₂ doped core. The proposed fibers designs can be used in generation of a normal dispersion supercontinuum reaching the mid-IR region.
Twórcy
  • Department of Optics and Photonics, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeże Wyspianskiego 27, 50-370 Wroclaw, Poland
autor
  • Department of Optics and Photonics, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeże Wyspianskiego 27, 50-370 Wroclaw, Poland
  • Department of Optics and Photonics, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeże Wyspianskiego 27, 50-370 Wroclaw, Poland
Bibliografia
  • [1] J.K. Ranka, R.S. Windeler, A.J. Stentz, Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm, Opt. Lett. 25 (1) (2000) 25–27.
  • [2] I. Hartl, C. Chudoba, X.D. Li, R.K. Ghanta, T.H. Ko, J.G. Fujimoto, J.K. Ranka, R.S. Windeler, Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber, Opt. Lett. 26 (9) (2001) 608–610.
  • [3] T. Lindfors, P. Stoller, V. Sandoghdar, Detection and spectroscopy of gold nanoparticles using supercontinuum white light confocal microscopy, Phys. Rev. Lett. vol. 93 (3) (2004), p. 037401.
  • [4] T.A. Birks, W.J. Wadsworth, P.S. Russell, Supercontinuum generation in tapered fibers, Opt. Lett. 25 (19) (2000) 1415–1417.
  • [5] J. Dudley, G. Genty, S. Coen, Supercontinuum generation in photonic crystal fiber, Rev. Mod. Phys. 78 (4) (2006) 1135–1184.
  • [6] M. Heidt, A. Hartung, G. Bosman, P. Krok, E. Rochwer, E. Schwoerer, H. Bartlelt, Coherent octave spanning near-infrared and visible supercontinuum generation in all-normal dispersion photonic crystal fibers, Opt. Express 19 (4) (2011) 3775–3787.
  • [7] M. Heidt, Pulse preserving flat-top supercontinuum generation in all-normal dispersion photonic crystal fibers, J. Opt. Soc. Am. B Opt. Phys. 27 (3) (2010) 550–559.
  • [8] M. Klimczak, G. Soboń, R. Kasztelanic, K. Abramski, R. Buczyński, Direct comparison of shot-to-shot noise performance of all normal dispersion and anomalous dispersion supercontinuum pumped with sub-picosecond pulse fiber-based laser, Sci. Rep. 6 (1928) 2016.
  • [9] C.C. Wang, H.M. Wang, J. Wu, Heavily germanium-doped silica fiber with a flat normal dispersion profile, IEEE Photonics J. 7 (2) (2015) 7101110.
  • [10] S.K. Chatterjee, S.N. Khan, P. Chaudhuri, Designing a two-octave spanning flat-top supercontinuum source by control of nonlinear dynamics through multi-order dispersion engineering in binary multi-clad microstructured fiber, J. Opt. Soc. Am. B 32 (7) (2015) 1499–1509.
  • [11] T. Martynkien, D. Pysz, R. Stępień, R.R. Buczyński, All-solid microstructured fiber with flat normal chromatic dispersion, Opt. Lett. 39 (8) (2014) 2342–2345.
  • [12] M. Klimczak, B. Siwicki, P. Skibiński, D. Pysz, R. Stępień, A. Heidt, C. Radzewicz, R. Buczyński, Coherent supercontinuum generation up to 2.3 μm in all-solid soft-glass photonic crystal fibers with flat all-normal dispersion, Opt. Express 22 (15) (2014) 18824–18832.
  • [13] S. Kedenburg, T. Steinle, F. Mörz, A. Steinmann, H. Giessen, High-power mid-infrared high repetition-rate supercontinuum source based on a chalcogenide step-index fibe, Opt. Lett. 40 (11) (2015) 2668–2671.
  • [14] L. Liu, T. Cheng, K. Nagasaka, H. Tong, G. Qin, T. Suzuki, Y. Ohishi, Coherent mid-infrared supercontinuum generation in all-solid chalcogenide microstructured fibers with all-normal dispersion, Opt. Lett. 41 (2) (2016)392–395.
  • [15] C. Strutynski, P. Froidevaux, F. Désévédavy, J. Jules, G. Gadret, A. Bendahmane, K. Tarnowski, B. Kibler, F. Smektala, Tailoring supercontinuum generation beyond 2 μm in step-index tellurite fibers, Opt. Lett. 42 (2) (2017) 247–250.
  • [16] T. Hori, J. Takayanagi, N. Nishizawa, T. Goto, Flatly broadened, wideb and andlow noise supercontinuum generation in highly nonlinear hybrid fiber, Opt. Express 12 (2) (2004) 317–324.
  • [17] C. Xia, M. Kumar, M.Y. Cheng, O.P. Kulkarni, M.N. Islam, A. Galvanauskas, F.L. Terry, M.J. Freeman, D.A. Nolan, W.A. Wood, Supercontinuum generation in silica fibers by amplified nanosecond laser diode pulses, IEEE J. Sel. Top. Quantum Electron. 13 (3) (2007) 789–797.
  • [18] K. Tarnowski, W. Urbańczyk, All-normal dispersion hole-assisted silica fibers for generation of supercontinuum reaching midinfrared, IEEE Photonics J. 8 (1) (2016) 7100311.
  • [19] K. Tarnowski, T. Martynkien, P. Mergo, K. Poturaj, G. Soboń, W. Urbańczyk, Coherent supercontinuum generation up to 2.2 um in all-normal dispersion microstructured silica fiber, Opt. Express 22 (15) (2016) 30523–30536.
  • [20] K. Tarnowski, T. Martynkien, P. Mergo, K. Poturaj, A. Anuszkiewicz, P. Béjot, F. Billard, O. Faucher, B. Kibler, U. Urbanczyk, Polarized all-normal dispersion supercontinuum reaching 2.5 _m generated in a birefringent microstructured silica fiber, Opt. Express 25 (22) (2017) 27452–27463.
  • [21] I. Sukhoivanov, S. Iakushev, O. Shulika, E. Silvestre, M. Andres, Design of all-normal dispersion microstructured optical fiber on silica platform for generation of pulse-preserving supercontinuum under excitation at 1550 nm, J. Lightwave Technol. (99) (2017).
  • [22] R.B. Dyott, Elliptical Fiber Waveguides, Artech, 1995.
  • [23] H. Sunak, S. Bastien, Refractive index and material dispersion interpolation of doped silica in the 0. 6–1.8 μm wavelength region, IEEE Photonics 1 (6) (1989) 142–145.
  • [24] K. Nakajima, M. Ohashi, Dopant dependence of effective nonlinear refractive index in GeO2- and F-doped core single-mode fibers, IEEE Photonics Techno. Lett. 14 (4) (2002) 492–494.
  • [25] J. Kobelke, K. Schuster, D. Litzkendorf, A. Schwuchow, J. Kirchhof, V. Tombelaine, H. Bartelt, P. Leproux, V. Couderc, A. Labruyere, R. Jamier, Highly germanium and lanthanum modified silica based glasses in microstructured optical fibers for non-linear applications, Opt. Mater. 32 (9) (2010) 1002–1006.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f67a9639-2883-4f68-9f4d-953bacbd4ab4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.