PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Identification of crashworthiness indicators of column energy absorbers with triggers in the form of cylindrical embossing on the lateral edges using artificial neural networks

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the possibility of neural network application in order to identify the most advantageous design variants of column energy absorbers in terms of the achieved energy absorption indicators. Design variants of the column energy absorber made of standard thin-walled square aluminium profile with triggers in the form of four identical cylindrical embossments on the lateral edges were considered. These variants differ in the diameter of the trigger, its depth and position. The geometrical parameters of the trigger are crucial for the energy absorption performance of the energy absorber. The following indicators are studied: PCF (Peak Crushing Force), MCF (Mean Crushing Force), CLE (Crash Load Efficiency), SE (Stroke Efficiency) and TE (Total Efficiency). On the basis of numerical studies validated by experimentation, a neural network has been created with the aim of predicting the above-mentioned indices with an acceptable error for an energy absorber with the trigger of specified geometrical parameters and position. The paper demonstrates that the use of an effective multilayer perceptron can successfully speed up the design process, saving time on multivariate time-consuming analyses.
Rocznik
Strony
805--821
Opis fizyczny
Bibliogr. 51 poz., rys., tab.
Twórcy
  • Lublin University of Technology, Department of Machine Construction & Mechatronics, Lublin, Poland
  • Lublin University of Technology, Department of Machine Construction & Mechatronics, Lublin, Poland
Bibliografia
  • 1. Abbasi M, Reddy S, Ghafari-Nazari A, Fard M. Multiobjective crashworthiness optimization of multi-cornered thin-walled sheet metal members. Thin-Walled Structures 2015. doi:10.1016/j.tws.2014.12.009, https://doi.org/10.1016/j.tws.2014.12.009.
  • 2. Abramowicz W. Thin-walled structures as impact energy absorbers. Thin-Walled Structures, 2003. doi:10.1016/S0263-8231(02)00082-4, https://doi.org/10.1016/S0263-8231(02)00082-4.
  • 3. Al-Garni A, Abdelrahman W, Abdallah A. ANN-based failure modeling of classes of aircraft engine components using radial basis functions. Eksploatacja i Niezawodnosc 2019; 21(2): 311–317, https://doi.org/10.17531/ein.2019.2.16.
  • 4. Alavi Nia A, Parsapour M. Comparative analysis of energy absorption capacity of simple and multi-cell thin-walled tubes with triangular, square, hexagonal and octagonal sections. Thin-Walled Structures 2014; 74: 155–165, https://doi.org/10.1016/j.tws.2013.10.005.
  • 5. Alexander J M. An approximate analysis of the collapse of thin cylindrical shells under axial loading. Quarterly Journal of Mechanics and Applied Mathematics 1960; 13: 10–15.
  • 6. Alghamdi A A A. Collapsible impact energy absorbers: An overview. Thin-Walled Structures 2001. doi:10.1016/S0263-8231(00)00048-3, https://doi.org/10.1016/S0263-8231(00)00048-3.
  • 7. Ali M, Ohioma E, Kraft F, Alam K. Theoretical, numerical, and experimental study of dynamic axial crushing of thin walled pentagon and cross-shape tubes. Thin-Walled Structures 2015. doi:10.1016/j.tws.2015.04.007, https://doi.org/10.1016/j.tws.2015.04.007.
  • 8. Badora M, Sepe M, Bielecki M et al. Predicting length of fatigue cracks by means of machine learning algorithms in the small-data regime. Eksploatacja i Niezawodnosc 2021; 23(3): 575–585, https://doi.org/10.17531/EIN.2021.3.19.
  • 9. Baroutaji A, Sajjia M, Olabi A G. On the crashworthiness performance of thin-walled energy absorbers: Recent advances and future developments. Thin-Walled Structures 2017. doi:10.1016/j.tws.2017.05.018, https://doi.org/10.1016/j.tws.2017.05.018.
  • 10. Baykasoğlu A, Baykasoğlu C, Cetin E. Multi-objective crashworthiness optimization of lattice structure filled thin-walled tubes. Thin-Walled Structures 2020. doi:10.1016/j.tws.2020.106630, https://doi.org/10.1016/j.tws.2020.106630.
  • 11. Chen D H, Ozaki S. Circumferential strain concentration in axial crushing of cylindrical and square tubes with corrugated surfaces. Thin-Walled Structures 2009; 47(5): 547–554, https://doi.org/10.1016/j.tws.2008.10.003.
  • 12. Chen W, Wierzbicki T. Relative merits of single-cell, multi-cell and foam-filled thin-walled structures in energy absorption. Thin-Walled Structures 2001. doi:10.1016/S0263-8231(01)00006-4, https://doi.org/10.1016/S0263-8231(01)00006-4.
  • 13. Fang J, Sun G, Qiu N et al. On design optimization for structural crashworthiness and its state of the art. Structural and Multidisciplinary Optimization 2017; 55(3): 1091–1119, https://doi.org/10.1007/s00158-016-1579-y.
  • 14. Ferdynus M, Kotełko M, Kral J. Energy absorption capability numerical analysis of thin-walled prismatic tubes with corner dents under axial impact. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2018; 20(2): 252–289, https://doi.org/10.17531/ein.2018.2.10.
  • 15. Ferdynus M, Kotełko M, Urbaniak M. Crashworthiness performance of thin-walled prismatic tubes with corner dents under axial impact - Numerical and experimental study. Thin-Walled Structures 2019. doi:10.1016/j.tws.2019.106239, https://doi.org/10.1016/j.tws.2019.106239.
  • 16. Ferdynus M, Rozylo P, Rogala M. Energy absorption capability of thin-walled prismatic aluminum tubes with spherical indentations. Materials 2020; 13(19): 1–19, https://doi.org/10.3390/ma13194304.
  • 17. Hanssen A G, Langseth M, Hopperstad O S. Static and dynamic crushing of square aluminum extrusions with aluminum foam filler. International Journal of Impact Engineering 2000. doi:10.1016/S0734-743X(99)00169-4, https://doi.org/10.1016/S0734-743X(99)00169-4.
  • 18. Jafarzadeh-aghdam N, Schröder K. Thin-Walled Structures Mechanism of reproducible axial impact of square crash boxes. Thin-Walled Structures 2022; 176(February): 109062, https://doi.org/10.1016/j.tws.2022.109062.
  • 19. Jones N. Structural Impact. 1990. doi:10.1017/cbo9780511624285, https://doi.org/10.1017/cbo9780511624285.
  • 20. Karagiozova D, Jones N. Dynamic buckling of elastic-plastic square tubes under axial impact - II: Structural response. International Journal of Impact Engineering 2004; 30(2): 167–192, https://doi.org/10.1016/S0734-743X(03)00062-9.
  • 21. Kazi M K, Eljack F, Mahdi E. Design of composite rectangular tubes for optimum crashworthiness performance via experimental and ANN techniques. Composite Structures 2022; 279(July 2021): 114858, https://doi.org/10.1016/j.compstruct.2021.114858.
  • 22. Kosucki A, Stawiński Ł, Malenta P et al. Energy consumption and energy efficiency improvement of overhead crane’s mechanisms. Eksploatacja i Niezawodnosc 2020; 22(2): 322–330, https://doi.org/10.17531/ein.2020.2.15.
  • 23. Laban O, Gowid S, Mahdi E, Musharavati F. Experimental investigation and artificial intelligence-based modeling of the residual impact damage effect on the crashworthiness of braided Carbon/Kevlar tubes. Composite Structures 2020. doi:10.1016/j.compstruct.2020.112247,https://doi.org/10.1016/j.compstruct.2020.112247.
  • 24. Langseth M, Hopperstad O S, Berstad T. Crashworthiness of aluminum extrusions: Validation of numerical simulation, effect of mass ratio and impact velocity. International Journal of Impact Engineering 1999; 22(9): 829–854, https://doi.org/10.1016/S0734-743X(98)00070-0.
  • 25. Lee S, Hahn C, Rhee M, Oh J E. Effect of triggering on the energy absorption capacity of axially compressed aluminum tubes. Materials and Design 1999; 20(1): 31–40, https://doi.org/10.1016/s0261-3069(98)00043-0.
  • 26. Liu W, Lin Z, He J et al. Crushing behavior and multi-objective optimization on the crashworthiness of sandwich structure with star-shaped tube in the center. Thin-Walled Structures 2016; 108: 205–214, https://doi.org/10.1016/j.tws.2016.08.021.
  • 27. Lu G, Yu T. Energy Absorption of Structures and Materials. 2003. doi:10.1533/9781855738584, https://doi.org/10.1533/9781855738584.
  • 28. Luo Y, Fan H. Energy absorbing ability of rectangular self-similar multi-cell sandwich-walled tubular structures. Thin-Walled Structures 2018; 124(March 2017): 88–97, https://doi.org/10.1016/j.tws.2017.11.042.
  • 29. Marzbanrad J, Ebrahimi M R. Multi-Objective Optimization of aluminum hollow tubes for vehicle crash energy absorption using a genetic algorithm and neural networks. Thin-Walled Structures 2011; 49(12): 1605–1615, https://doi.org/10.1016/j.tws.2011.08.009.
  • 30. Mirzaei M, Shakeri M, Sadighi M, Akbarshahi H. Crashworthiness design for cylindrical tube using neural network and genetic algorithm. Procedia Engineering 2011; 14: 3346–3353, https://doi.org/10.1016/j.proeng.2011.07.423.
  • 31. Nia A A, Hamedani J H. Comparative analysis of energy absorption and deformations of thin walled tubes with various section geometries. Thin-Walled Structures 2010. doi:10.1016/j.tws.2010.07.003, https://doi.org/10.1016/j.tws.2010.07.003.
  • 32. Paygozar B, Dizaji S A. Investigating Energy Absorption Accessible by Plastic Deformation of a Seismic Damper Using Artificial Neural Network. Procedia Structural Integrity 2019; 21(January): 138–145, https://doi.org/10.1016/j.prostr.2019.12.095.
  • 33. Pirmohammad S, Marzdashti S E. Crushing behavior of new designed multi-cell members subjected to axial and oblique quasi-static loads. Thin-Walled Structures 2016; 108: 291–304, https://doi.org/10.1016/j.tws.2016.08.023.
  • 34. Rai V, Ghasemnejad H, Watson J W et al. Developed trigger mechanisms to improve crush force efficiency of aluminium tubes. Engineering Structures 2019. doi:10.1016/j.engstruct.2019.109620, https://doi.org/10.1016/j.engstruct.2019.109620.
  • 35. Reddy S, Abbasi M, Fard M. Multi-cornered thin-walled sheet metal members for enhanced crashworthiness and occupant protection. Thin-Walled Structures 2015. doi:10.1016/j.tws.2015.03.029, https://doi.org/10.1016/j.tws.2015.03.029.
  • 36. Rogala M, Gajewski J, Ferdynus M. Numerical analysis of the thin-walled structure with different trigger locations under axial load. IOP Conference Series: Materials Science and Engineering 2019. doi:10.1088/1757-899X/710/1/012028, https://doi.org/10.1088/1757-899X/710/1/012028.
  • 37. Seyedi M R. A Study of Multi-Objective Crashworthiness Optimization of the Thin-Walled Composite Tube under Axial Load. 2020: 438–452.
  • 38. Sharifi S, Shakeri M, Fakhari H E, Bodaghi M. Experimental investigation of bitubal circular energy absorbers under quasi-static axial load. Thin-Walled Structures 2015. doi:10.1016/j.tws.2014.12.008, https://doi.org/10.1016/j.tws.2014.12.008.
  • 39. Winzer R, Glinicka A. The static and dynamic compressive behaviour of selected aluminium alloys. Engineering Transactions 2011; 59(2): 85–100.
  • 40. Xu F, Zhang X, Zhang H. A review on functionally graded structures and materials for energy absorption. Engineering Structures 2018; 171(February): 309–325, https://doi.org/10.1016/j.engstruct.2018.05.094.
  • 41. Yang X, Ma J, Wen D, Yang J. Crashworthy design and energy absorption mechanisms for helicopter structures: A systematic literature review. Progress in Aerospace Sciences 2020; 114(June): 100618, https://doi.org/10.1016/j.paerosci.2020.100618.
  • 42. Yin H, Wen G, Liu Z, Qing Q. Crashworthiness optimization design for foam-filled multi-cell thin-walled structures. Thin-Walled Structures 2014; 75: 8–17, https://doi.org/10.1016/j.tws.2013.10.022.
  • 43. Yuen S C K, Nurick G N. The energy-absorbing characteristics of tubular structures with geometric and material modifications: An overview. Applied Mechanics Reviews 2008; 61(1–6): 0208021–02080215, https://doi.org/10.1115/1.2885138.
  • 44. Zarei H R, Kröger M. Optimization of the foam-filled aluminum tubes for crush box application. Thin-Walled Structures 2008; 46(2): 214–221, https://doi.org/10.1016/j.tws.2007.07.016.
  • 45. Zhang X, Cheng G, Wang B, Zhang H. Optimum design for energy absorption of bitubal hexagonal columns with honeycomb core. International Journal of Crashworthiness 2008; 13(1): 99–107, https://doi.org/10.1080/13588260701731732.
  • 46. Zhang X, Cheng G, You Z, Zhang H. Energy absorption of axially compressed thin-walled square tubes with patterns. Thin-Walled Structures 2007; 45(9): 737–746, https://doi.org/10.1016/j.tws.2007.06.004.
  • 47. Zhang X, Huh H. Energy absorption of longitudinally grooved square tubes under axial compression. Thin-Walled Structures 2009. doi:10.1016/j.tws.2009.07.003, https://doi.org/10.1016/j.tws.2009.07.003.
  • 48. Zhang X, Wen Z, Zhang H. Axial crushing and optimal design of square tubes with graded thickness. Thin-Walled Structures 2014. doi:10.1016/j.tws.2014.07.004, https://doi.org/10.1016/j.tws.2014.07.004.
  • 49. Crashworthiness of vehicles. Londin, Mechanical Engineering Publications Limited: 1978.
  • 50. Structural crashworthiness. London, Butterworths: 1983.
  • 51. Structural impact and crashworthiness. New York, Elsevier Applied Science Publishers: 1984.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f6791740-d8e0-46eb-850b-6d6f4f9ed549
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.