PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Detection of the Long Period Long Duration (LPLD) Events in Time- and Frequency-Domain

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Long Period Long Duration (LPLD) signals are unusual seismic events that can be observed during hydraulic fracturing. These events are very similar in appearance to tectonic tremors sequences, which were first observed in subduction zones. Their nature is not well known. LPLD might be related to the productivity of the reservoir. Different methods of the LPLD events’ detection recorded during hydraulic fracturing are presented. The author applied two methods for LPLD detection – Butterworth filtering and Continuous Wavelet Transform (CWT). Additionally, a new approach to LPLD events detection – instantaneous seismic attributes – was used, common in a classical seismic interpretation but not in microseismic monitoring.
Czasopismo
Rocznik
Strony
201--213
Opis fizyczny
Bibliogr. 21 poz., rys., wykr.
Twórcy
autor
  • Academy of Science and Technology AGH, Faculty of Geology, Geophysics and Environmental Protection, Kraków, Poland
Bibliografia
  • [1] Castagna, J.P., and S. Sun (2006), Comparison of spectral decomposition methods, First Break 24, 3, 75-79.
  • [2] Castagna, J.P., S. Sun, and R.W. Siegfried (2002), The use of spectral decomposition as a hydrocarbon indicator, GasTIPS, Summer, 24-27.
  • [3] Chakraborty, A., and D. Okaya (1995), Frequency-time decomposition of seismic data using wavelet-based methods, Geophysics 60, 6, 1906-1916, DOI:10.1190/1.1443922.
  • [4] Chouet, B.A. (1996), Long-period volcano seismicity: its source and use in eruption forecasting, Nature 380, 6572, 309-316, DOI: 10.1038/380309a0.
  • [5] Chung, H.-M. (1994), Seismic properties of thin beds, Ph.D. Thesis, The University of Calgary, Calgary, Canada, 97-99.
  • [6] Das, I., and M.D. Zoback (2011), Long-period, long-duration seismic events during hydraulic fracture stimulation of a shale gas reservoir, The Leading Edge 30, 7, 778-786, DOI: 10.1190/1.3609093.
  • [7] Das, I., and M.D. Zoback (2013), Long-period, long-duration seismic events during hydraulic stimulation of shale and tight-gas reservoirs – Part 1: Waveform characteristics, Geophysics 78, 6, 97-108, DOI:10.1190/geo2013-0164.1.
  • [8] Kumar, P., and E. Foufoula-Georgiou (1997), Wavelet analysis for geophysical applications, Rev. Geophys. 35, 4, 385-412, DOI: 10.1029/97RG00427.
  • [9] Lorenz, J.C., J.L. Sterling, D.S. Schechter, C.L. Whigham, and J.L. Jensen (2002), Natural fractures in the Spraberry Formation, Midland basin, Texas: The effects of mechanical stratigraphy on fracture variability and reservoir behavior, AAPG Bull. 86, 3, 505-524.
  • [10] Maxwell, S.C., J. Shemeta, E. Campbell, and D. Quirk (2009), Detection of microseismic events using a surface receiver network. In: Second EAGE Passive Seismic Workshop – Exploration and Monitoring Applications 2009, DOI: 10.3997/2214-4609.20146738.
  • [11] Nadeau, R.M., and A. Guilhem (2009), Nonvolcanic tremor evolution and the San Simeon and Parkfield, California, earthquakes, Science 325, 5937, 191-193, DOI: 10.1126/science.1174155.
  • [12] Obara, K. (2002), Nonvolcanic deep tremor associated with subduction in southwest Japan, Science 296, 5573, 1679-1681, DOI: 10.1126/science.1070378.
  • [13] Okada, H. (2003), The Microtremor Survey Method, Geophysical Monograph Series, Vol. 12, Society of Exploration Geophysicists, Tulsa, USA.
  • [14] Shelly, D.R., G.C. Beroza, S. Ide, and S. Nakamula (2006), Low-frequency earthquakes in Shikoku, Japan, and their relationship to episodic tremor and slip, Nature 442, 7099, 188-191, DOI: 10.1038/ nature04931.
  • [15] Shelly, D.R., G.C. Beroza, and S. Ide (2007), Non-volcanic tremor and low-frequency earthquake swarns, Nature 446, 305-307, DOI: 10.1038/nature05666.
  • [16] Stockwell, J. (2008), Complete listing of CWP free program self-documentations, Documentation generated by shell script GENDOCS, Center of Wave Phenomena, Colorado School of Mines, Golden, USA, 147-148.
  • [17] St-Onge, A., and D.W. Eaton (2011), Noise examples from two microseismic datasets, CSEG Recorder 36, 8, 46-49.
  • [18] Sun, R., and G.A. McMechan (1988), Finite-difference modeling of borehole resonances, Energy Sources 10, 1, 55-75, DOI: 10.1080/00908318808908916.
  • [19] Taner, M.T. (1992), Attributes revisited, Rock Solid Images, Houston, Texas, http//wvwv.rocksolidimaqes.com.
  • [20] Taner, M.T., F. Koehler, and R.E. Sheriff (1979), Complex seismic trace analysis, Geophysics 44, 6, 1041-1063, DOI: 10.1190/1.1440994.
  • [21] Tary, J.B., and M. van der Baan (2012), Potential use of resonance frequencies in microseismic interpretation, The Leading Edge 31, 11, 1338-1346, DOI:10.1190/tle31111338.1.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f6749e55-1d3b-497a-999c-9e6eaed2e661
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.