PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Determining a damping coefficient by using a microelectromechanical systems accelerometer for finite element method simulation purposes on a discrete damper example

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper introduces a methodology, algorithms, and the achieved results for determining the damping coefficient using a microelectromechanical systems (MEMS) accelerometer, specifically for finite element method (FEM) simulations. The paper not only showcases the results but also employs several independent verification procedures to confirm the validity of the obtained damping coefficient. The determined damping coefficient is presented directly in SI units, making it readily applicable to a specific object, while it is usually given as a percentage. The accuracy of the determined damping ratio was validated through unbiased experiments, an in-house computational Python program. Additionally, to ensure the correctness of the determined damping coefficient, a practical example was provided wherein FEM simulation was executed using a discrete element as a damper within ANSYS LS-Dyna software to corroborate the results. The authors emphasize that the proposed method for determining the damping coefficient is both efficient and can be implemented without the necessity of complex equipment. This novel methodology for assessing a damping coefficient serves as a promising alternative to Rayleigh Damping, which lacks a direct physical correlation. Moreover, it opens up significant possibilities for broader application in various engineering fields, including structural dynamics, vibration analysis, and mechanical system optimization.
Słowa kluczowe
Twórcy
autor
  • Department of Mechanical Engineering, Polish Naval Academy of the Heroes of Westerplatte, ul. Śmidowicza 69, Gdynia, Poland
  • Department of Mechanical Engineering, Gdansk University of Technology, ul. Gabriela Narutowicza 11/12, Gdańsk, Poland
  • Department of Mechanical Engineering, Polish Naval Academy of the Heroes of Westerplatte, ul. Śmidowicza 69, Gdynia, Poland
Bibliografia
  • 1. https://tiny.pl/9n68m](https://tiny.pl/9n68m) 1998–2023: access on 2022-03-21.
  • 2. Chowdhury I, Dasgupta S. Computation of Rayleigh damping coefficients for large systems. The Electronic Journal of Geotechnical Engineer 2003; 43(6855–6868): 1–11.
  • 3. Liu M, Gorman D.G. Formulation of Rayleigh damping and its extensions. Computers & Structures 1995; 57(2): 277–285.
  • 4. Ribeiro R.R, Lameiras R. Evaluation of low-cost MEMS accelerometers for SHM: Frequency and damping identification of civil structures. Latin American Journal of Solids and Structures 2019; 16(7): 203.
  • 5. Olejnik P, Awrejcewicz J. Coupled oscillators in identification of nonlinear damping of a real parametric pendulum. Mechanical Systems and Signal Processing 2018; 98: 91–107.
  • 6. Amabili M. Nonlinear damping in nonlinear vibrations of rectangular plates: Derivation from viscoelasticity and experimental validation. Journal of the Mechanics and Physics of Solids 2018; 118: 275–292.
  • 7. Lazarek M, Brzeski P, Perlikowski P. Design and identification of parameters of tuned mass damper with inerter which enables changes of inertance. Mechanism and Machine Theory 2018; 119\:C: 161–173.
  • 8. Sun Q, Dias D. Significance of Rayleigh damping in nonlinear numerical seismic analysis of tunnels. Soil Dynamics and Earthquake Engineering 2018; 115: 489–494.
  • 9. Grządziela A, Kluczyk M. Shock absorbers damping characteristics by lightweight drop hammer test for naval machines. Materials 2021; 4(14): 772.
  • 10. Hall J.F. Problems encountered from the use (or misuse) of Rayleigh damping. Earthquake Engineering & Structural Dynamics 2006; 35(5): 525–545.
  • 11. Mohammad D, Khan N, Ramamurti V. On the role of Rayleigh damping. Journal of Sound and Vibration 1995; 185(2): 207–218.
  • 12. Alipour A, Zareian F. Study Rayleigh damping in structures; uncertainties and treatments. The 14th World Conference on Earthquake Engineering 2022; 12–17.
  • 13. Tian Y, Fei Y, Huang Y, Lu X.A. Universal rate-dependent damping model for arbitrary damping-frequency distribution. Engineering Structures 2021; 255: 113–894.
  • 14. Rahul B, Dharani J, Balaji R. Optimal method for determination of Rayleigh damping coefficients for different materials using modal analysis. International Journal of Vehicle Structures & Systems 2021; 13(1): 102–111.
  • 15. Mehrabi M, Soorgee M.H, Habibi H, Kappatos V. An experimental technique for evaluating viscoelastic damping using ultrasonic guided waves. Ultrasonics 2022; 123: 106–707.
  • 16. Bajkowski J.M, Dyniewicz B, Bajer C.I. Damping properties of a beam with vacuum-packed granular damper. Journal of Sound and Vibration 2015; 341: 74–85.
  • 17. Mevada H, Patel D. Experimental determination of structural damping of different materials. Procedia Engineering 2016; 144: 110–115.
  • 18. Shirzadeh R, Devriendt C, Bidakhvidi M.A, Guillaume P. Experimental and computational damping estimation of an offshore wind turbine on a monopile foundation. Journal of Wind Engineering and Industrial Aerodynamics 2013; 120: 96–106.
  • 19. Bendat J.S, Piersol A.G. Random Data: Analysis and Measurement Procedures 2011: John Wiley & Sons.
  • 20. Newland D.E. Random Vibrations, Spectral & Wavelet Analysis. Longman Scientific & Technical. 1993; 5.
  • 21. Papoulis A, Pillai S.U. Probability, Random Variables, and Stochastic Processes 2002: Fourth Edition, McGraw-Hill New York.
  • 22. Chen Z, Mechefske C.K. Machine signature identification by analysis of impulse vibration signals. Journal of Sound and Vibration 2001; 244(1): 155–167.
  • 23. Lee S.K. Application of the L-Wigner distribution to the diagnosis of local defects of gear tooth. KSME International Journal 1999; 13: 144–157.
  • 24. Luo G.Y, Osypiw D, Irle M. Real-time condition monitoring by significant and natural frequencies analysis of vibration signal with wavelet filter and autocorrelation enhancement. Journal of Sound and Vibration 2000; 236(3): 413–430.
  • 25. Tang S.K. On the time–frequency analysis of signals that decay exponentially with time. Journal of Sound and Vibration 2000; 234(2): 241–258.
  • 26. Varanis M, Silva A.L, Brunetto P.H.A, Gregolin R.F. Instrumentation for mechanical vibrations analysis in the time domain and frequency domain using the Arduino platform. Revista Brasileira de Ensino de Física 2016; 38(1): 5.
  • 27. https://tiny.pl/7v18k](https://tiny.pl/7v18k Exploring Data Acquisition and Trajectory Tracking with Android Devices and Python 2019: access on 2022-03-21.
  • 28. Han S. Measuring displacement signal with an accelerometer. Journal of Mechanical Science and Technology 2010; 24(6): 1329–1335.
  • 29. Knapp J, Altmann E, Niemann J, Werner K.-D. Measurement of shock events by means of strain gauges and accelerometers. Measurement 1998; 24(2): 87–96.
  • 30. https://tiny.pl/9nzgf Resonance-Vibration Analysis: access on 2022-03-21.
  • 31. https://tiny.pl/wwxmx Phyphox App: access on 2023-11-22.
  • 32. https://tiny.pl/7vx96 Logarithmic damping decrement: access on 2023-11-22.
  • 33. https://tiny.pl/wwxx6 Scipy Signal Iirdesign: access on 2023-11-22.
  • 34. https://tiny.pl/wwxxb Scipy Signal Butter: access on 2023-11-22.
  • 35. https://tiny.pl/dr8kby64 IPython and LS-Dyna source codes 2025-02-12.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f6729f2b-c237-462b-997e-5e0459ff5a5e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.