PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Problems of forecasting the length of the assembly cycle of complex products realized in the MTO (make-to-order) model

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Problematyka prognozowania długości cyklu montażu wyrobów złożonych realizowanych w modelu MTO (make-to-order)
Języki publikacji
EN
Abstrakty
EN
This article presents the problem of forecasting the length of machine assembly cycles in make-to-order production (Make-to-Order). The model of Make-to-Order production and the technological process of manufacturing the finished product are presented. The possibility of developing a novel method, using artificial intelligence solutions, to estimate machine assembly times based on historical company data on manufacturing times for structurally similar components, is described. It is assumed that the result of the developed method will be an intelligent system supporting efficient and accurate estimation of machine assembly time, ready for implementation in production conditions. Such data as part availability, human resource availability and novelty factor will be used as input data for learning the neural network, while the output variable during learning the neural network will be the actual machine assembly time.
PL
W niniejszym artykule przedstawiono problem prognozowania długości cyklu montażu maszyn w produkcji na zamówienie (Make-to-Order). Przedstawiony został model produkcji na zamówienie oraz proces technologiczny wytwarzania wyrobu gotowego. Opisana została możliwość opracowania nowatorskiej metody, wykorzystującej rozwiązania z zakresu sztucznej inteligencji, umożliwiającej szacowanie czasu montażu maszyn w oparciu o dane historyczne przedsiębiorstw, dotyczące czasów wytwarzania podobnych konstrukcyjnie elementów. Zakłada się, iż rezultatem opracowanej metody będzie inteligentny system wspomagający skuteczne i dokładne szacowanie czasu montażu maszyn, gotowy do implementacji w warunkach produkcyjnych. Jako dane wejściowe do uczenia sieci neuronowej wykorzystane zostaną takie dane jak: dostępność części, dostępność zasobów ludzkich oraz czynnik nowości, zaś zmienną wyjściową podczas uczenia sieci neuronowej będzie rzeczywisty czas montażu maszyny.
Twórcy
  • Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, Lublin, Poland
  • Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, Lublin, Poland
  • Faculty of Management, Lublin University of Technology, Nadbystrzycka 36, Lublin, Poland
Bibliografia
  • 1. Akinc, U., Meredith, J. R. (2015). Make-to-forecast: Personalization with rapid delivery, Int. J. Oper. Prod. Manag., vol. 35, no. 5.
  • 2. Brzeziński M. (2013). Organization of production in an enterprise, Difin.
  • 3. Brzozowska J., Gola A., Kulisz M. (2022). General concept of using artificial neural networks in the process of estimating the assembly time of complex products. Management engineering: digitization of production. 4, Research News 2022.
  • 4. Chan A.H.S., Hoffmann E.R., Chung C.M.W. (2017). Subjective Estimates of Times for Assembly Work, International Journal of Industrial Ergonomics, 61.
  • 5. Ciechańska, O. (2018). Manufacturing model for availability as a new approach to production planning. Warsaw University of Technology.
  • 6. Ciechańska O., Szwed C. (2020). Characteristics and study of Make-to-Stock and Make-to-Availability production strategy using simulation modeling. Management and Production Engineering Review, vol. 11, no. 4.
  • 7. Danilczuk, W., Gola, A. (2020). Computer-assisted material demand planning using ERP systems and business intelligence technology, Applied Computer Science, vol. 16, no. 3.
  • 8. Danilczuk, W. (2019). Analysis of production data on the basis of transactions in the ERP system using business intelligence technology, Bus Tech. Eksploat. Syst. Transp., vol. R. 20, no. 7-8.
  • 9. Danilczuk W. (2023). Method of suboptimal scheduling of discrete production realized in the MTO-MTS hybrid model. Doctoral dissertation.
  • 10. Eigner, M., Roubanov, D., Sindermann, S., Ernst, J. (2014). Assembly Time Estimation Based on Product Assembly Information. In D. Marianović, M. Štorga, N. Pavković, N. Bojčetić (eds.), DS 77: Proceedings of the DESIGN 2014 13th International Design Conference.
  • 11. Fernandes, N. O., Silva, C., Carmo-Silva, S. (2015). Order release in the hybrid MTO-FTO production. Int. J. Prod. Econ., vol. 170.
  • 12. Gellert, A., Precup, S.A., Matei, A., Pirvu, B.C., Zamfirescu, C.B. (2022). Real-Time Assembly Support System with Hidden Markov Model and Hybrid Extensions. Mathematics, 10(15).
  • 13. Jacobs R. F., Berry W., Whybark D.C., T. V. (2011). Manufacturing planning and control for supply chain management. Mc Graw Hill. New York.
  • 14. Karaśkiewicz F. (2018). Methodology of using artificial intelligence tools and group technology in managing the design of non-automated assembly systems. Doctoral dissertation.
  • 15. Kulisz M., Zagórski I., Semeniuk A. (2016). Artificial neural network modelling of cutting force components during AZ91HP alloy milling, Applied Computer Science, vol. 12, no. 4.
  • 16. Liu X., Ni Z., Liu J., Cheng Y. (2016). Assembly Process Modeling Mechanism Based on the Product Hierarchy, Int. J. Adv. Manuf. Technol., 82.
  • 16. Meredith, J., Akinc U. (2006). Characterizing and structuring a new make-to-forecast production strategy. Elsevier B.V.
  • 17. Mital A., Desai A., Subramanian A., Mital A. (2014). Product Development, Elsevier.
  • 18. Mountain F., Zawadzki P., Hamrol A. (2016). Knowledge Based Engineering as a Condition of Effective Mass Production of Configurable Products by Design Automation, Journal of Machine Engineering, 16/4.
  • 19. Müller R., Esser M., Eilers J. (2013). Assembly Oriented Design Method for Reconfigurable Processes and Equipment, In Schuh G., Neugebauer R., Uhlmann E. (eds) Future Trends in Production Engineering, Springer, Berlin, Heidelberg.
  • 20. Roszkowska E. (2021). Multi-criteria decisions and negotiations. Selected theoretical aspects and experimental studies. University of Bialystok Publishing House.
  • 21. Rueckert, P., Birgy, K., Tracht, K. (2023). Image Based Classification of Methods-Time Measumerment Operations in Assembly Using Recurrent Neuronal Networks. Advances in System Integrated Intelligence, 546.
  • 22. Schedin J., Svensson-Harari N., Jackson M., Deleryd M. (2016). Management of Newness in an Assembly System, Journal of Machine Engineering, 16/1.
  • 23. Schroeder, R. G., Goldstein, S. M. (2021). Supply chain operations management: decisions and cases. New York: McGraw-Hill Education.
  • 24. Stevenson M., Hendry L. C., Kingsman B. G. (2005). A review of production planning and control: The applicability of key concepts to the make-to-order industry, Int. J. Prod. Res., vol. 43, no. 5.
  • 25. Zennaro I., Finco S., Battini D., Persona A. (2019). Big size highly customized product manufacturing systems: a literature review and future research agenda, vol. 57, no. 15-16.
Uwagi
Błędna numeracja bibliografii - poz. 16 występuje dwa razy;
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f66ec689-dd77-4abe-86f7-2fc29dafb6ef
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.