PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effects of Global Climate Oscillations on Intermonthly to Interannual Variability of Sea levels along the English Channel Coasts (NW France)

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This work examines the multiscale variability in sea level along the English Channel coasts (NW France) using a wavelet multiresolution decomposition of water level values and climate oscillations in order to gain insights in the connection between the global atmospheric circulation and the local-scale variability of the monthly extreme surges. Changes in surges have exhibited different oscillatory components from the intermonthly (~3-6-months) to the interannual scales (~1.5-years, ~2-4-years, ~5-8-years) with mean explained variances of ~40% and ~25% of the total variability respectively. The correlation between the multiresolution components of surges and 28 exceptional stormy events with different intensities has revealed that energetic events are manifested at all timescales while moderate events are limited to short scales. By considering the two hypotheses of (1) the physical mechanisms of the atmospheric circulation change according to the timescales and (2) their connection with the local variability improves the prediction of the extremes, the multiscale components of the monthly extreme surges have been investigated using four different climate oscillations (Sea Surface Temperature (SST), Sea-Level Pressure (SLP), Zonal Wind (ZW), and North Atlantic Oscillation (NAO)); results show statistically significant correlations with ~3-6-months, ~1.5-years, ~2-4-years, and ~5-8-years, respectively. Such physical links, from global to local scales, have been considered to model the multiscale monthly extreme surges using a time-dependent Generalized Extreme Value (GEV) distribution. The incorporation of the climate information in the GEV parameters has considerably improved the fitting of the different timescales of surges with an explained variance higher than 30%. This improvement exhibits their nonlinear relationship with the large-scale atmospheric circulation.
Czasopismo
Rocznik
Strony
226--242
Opis fizyczny
Bibliogr. 60 poz., mapa, tab., wykr.
Twórcy
autor
  • UMR CNRS 6143 – Continental and Coastal Morphodynamics ‘M2C’, University of Rouen, Mont-Saint-Aignan Cedex, France
  • UMR CNRS 6143 – Continental and Coastal Morphodynamics ‘M2C’, University of Rouen, Mont-Saint-Aignan Cedex, France
  • UMR CNRS 6143 – Continental and Coastal Morphodynamics ‘M2C’, University of Rouen, Mont-Saint-Aignan Cedex, France
  • UMR CNRS 6143 – Continental and Coastal Morphodynamics ‘M2C’, University of Rouen, Mont-Saint-Aignan Cedex, France
Bibliografia
  • [1] Akaike, H., 1974. Information theory as an extension of the maximum likelihood principle. In: Petrov, B. N., Csaki, F. (Eds.), Second International Symposium on Information Theory. Akademiai Kiado, Budapest, 267-281.
  • [2] Andrade, C., Leite, S. M., Santos, J. A., 2012. Temperature extremes in Europe: overview of their driving atmospheric patterns. Nat. Hazards Earth Syst. Sci. 12, 1671-1691, https://doi.org/10.5194/nhess-12-1671-2012.
  • [3] Bell, R., Goring, G., D., G., 1998. Seasonal Variability of Sea Level and Sea-surface Temperature on the North-east Coast of New Zealand. Estuar. Coast. Shelf. Sci. 46 (2), 307-319, https://doi.org/10.1006/ecss.1997.0286.
  • [4] Bessoumoulin, P., 2002. Les tempêtes en France. Annales des Mines 9-14.
  • [5] Brown, J., Souza, A., Wolf, J., 2010. Surge modelling in the ekstern Irish Sea: Present and future storm impact. Ocean Dynam. 60 (2), 227-236, https://doi.org/10.1007/s10236-009-0248-8.
  • [6] Colberg, F., McInnes, K. L., Grady, J., Hoeke, R., 2019. Atmospheric circulation changes and their impact on extreme sea levels around Australia. Nat. Hazards Earth Syst. Sci. 19, 1067-1086, https://doi.org/10.5194/nhess-19-1067-2019.
  • [7] Coleman, T. F., Li, Y., 1996. An interior trust region approach for nonlinear minimization subject to bounds. SIAM J. Optim. 6 (2), 418-445, https://doi.org/10.1137/0806023.
  • [8] Coles, S., 2001. An Introduction to Statistical Modeling of Extreme Values. Springer, London, 209 pp.
  • [9] Corte-Real, J., Zhang, Z., Wang, X., 1995. Large-scale circulation regimes and surface climatic anomalies over the Mediterranean. Int. J. Climatol. 15, 1135-1150, https://doi.org/10.1002/joc.3370151006.
  • [10] Costa, S., Cantat, O., Pirazzoli, P. A., Lemaitre, M., Delahaye, D., 2004. Vents forts et submersions de tempête en Manche Orientale: analyse météo-marine sur la période historique récente. Actes du Colloque de l’Association Internationale de Climatologie. Climat, mémoire du temps. Les relations climat-espace-société, 277-280.
  • [11] Dangendorf, S., Wahl, T., Hein, H., Jensen, J., Mai, S., Mudersbach, C., 2012. Level Variability and Influence of the North Atlantic Oscillation on Long-Term Trends in the German Bight. Water 4 (1), 170-195, https://doi.org/10.3390/w4010170.
  • [12] Feliks, Y., Ghil, M., Robertson, A.W., 2011. The atmospheric circulation over the North Atlantic as induced by the SST field. J. Clim. 24 (2), 522-542, https://doi.org/10.1175/2010JCLI3859.1.
  • [13] Frankignoul, C., Sennechael, N., Kwon, Y-O., Alexander, M. A., 2011. Influence of the Meridional Shifts of the Kuroshio and the Oyashio Extensions on the Atmospheric Circulation. J. Climate 24, 762-777, https://doi.org/10.1175/2010JCLI3731.1.
  • [14] Haigh, I., Nicolls, R., Wells, N., 2009. Mean sea level trends around the English Channel over the 20 th century and their wider context. Cont. Shelf. Res. 29, 2083-2098, https://doi.org/10.1016/j.csr.2009.07.013.
  • [15] Haigh, I., Nicolls, R., Wells, N., 2010. Assessing changes in extreme sea levels: Application to the English Channel 1900-2006. Cont. Shelf. Res 30, 1042-1055, https://doi.org/10.1016/j.csr.2010.02.002.
  • [16] Hanson, S., Nicholls, R., Ranger, N., Hallegatte, S., Dorfee-Morlot, J., Herweijer, C., Chateau, J., 2011. A global ranking of port cities with high exposure to climate extremes. Clim. Change. 104 (1), 89-111, https://doi.org/10.1007/s10584-010-9977-4.
  • [17] Idier, D., Dumas, F., Muller, H., 2012. Tide-surge interaction in the English Channel. Nat. Hazards Earth Syst. Sci. 12, 3709-3718, https://doi.org/10.5194/nhess-12-3709-2012.
  • [18] Idier, D., Paris, F., Le Cozannet, G., Boulahya, F., Dumas, F., 2017. Sea-level rise impacts on the tides of the European Shelf. Cont. Shelf. Res. 137, 56-71, https://doi.org/10.1016/j.csr.2017.01.007.
  • [19] Labat, D., 2005. Recent advances in wavelet analyses: Part 1. A review of concepts. J. Hydrol. 314 (1-4), 275-288, https://doi.org/10.1016/j.jhydrol.2005.04.003.
  • [20] Lavers, D. A., Hannah, D. M., Bradley, C., 2015. Connecting large-scale atmospheric circulation, river flow and groundwater levels in a chalk catchment in southern England. J. Hydrol. 523, 179-189, https://doi.org/10.1016/j.jhydrol.2015.01.060.
  • [21] Lavers, D. A., Prudhomme, C., Hannah, D. M., 2010. Large-scale climate, precipitation and British river flows: Identifying hydro-climatological connections and dynamics. J. Hydrol. 395 (3-4), 242-255, https://doi.org/10.1016/j.jhydrol.2010.10.036.
  • [22] Levin, S. A., 1992. The problem of pattern and scale in ecology: the Robert H. MacArthur Award Lecture. Ecology 73, 1943-1967.
  • [23] L’Heureux, M. L., Thompson, D. W. J., 2006. Observed relationships between the El Niño-Southern Oscillation and the extratropical zonal-mean circulation. J. Climate. 19, 276-287, https://doi.org/10.1175/JCLI3617.1.
  • [24] López-Parages, J., Rodríguez-Fonseca, B., 2012. Multidecadal modulation of El Niño influence on the Euro-Mediterranean rainfall. Geophys. Res. Lett. 39, art. 1009 no. L02704, https://doi.org/10.1029/2011GL050049.
  • [25] Lu, J., Chen, G., Frierson, D., M., W., 2008. Response of the Zonal Mean Atmospheric Circulation to El Niño versus Global Warming. J. Climate 21, 5835-5851, https://doi.org/10.1175/2008JCLI2200.1.
  • [26] Marcos, M., Chust, G., Jordá, G., Caballero, A., 2012. Effect of sealevel extremes on the western Basque coast during the 21st century. Clim. Res. 51 (3), 237-248, https://doi.org/10.3354/cr01069.
  • [27] Masina, M., Lamberti, A., 2013. A nonstationary analysis for the Northern Adriatic extreme sea levels, J. Geophys. Res. 118, 3999-4016, https://doi.org/10.1002/jgrc.20313.
  • [28] Massei, N., Dieppois, B., Hannah, D. M., Lavers, D. A., Fossa, M., Laignel, B., Debret, M., 2017. Multi-time-scale hydroclimate dynamics of a regional watershed and links to large-scale atmospheric circulation: Application to the Seine river catchment. France. J. Hydrol. 546, 262-275, https://doi.org/10.1016/j.jhydrol.2012.04.052.
  • [29] Mayes, J., Wheeler, D., 2013. Regional weather and climates of the British Isles - Part 1: Introduction. Weather 68 (1), 3-8, https://doi.org/10.1002/wea.2041.
  • [30] Menendez, M., Woodworth, P. L., 2010. Changes in extreme high water levels based on a quasi-global tide-gauge data set. J. Geophys. Res. 115, art. no. C10011, https://doi.org/10.1029/2009JC005997.
  • [31] Mizuta, R., 2012. Intensification of extratropical cyclones associated with the polar jet change in the CMIP5 global warming projections. Geophys. Res. Lett. 39, 1-6. art. no. L19707, https://doi.org/10.1029/2012GL053032.
  • [32] Nakamura, M., Yamane, S., 2009. Dominant anomaly patterns in the near-surface baroclinicity and accompanying anomalies in the atmosphere and oceans. Part I: North Atlantic basin. J. Climate 22, 880-904, https://doi.org/10.1175/2010JCLI3017.1.
  • [33] Namias, J., 1969. On the causes of the small number of Atlantic hurricanes in 1968. Mon. Weather Rev. 97 (4), 346-348.
  • [34] Nicholls, R. J., Marinova, N., Lowe, J. A., Brown, S., Vellinga, P., De Gusmao, D., Hinkel, J., Tol, R. S., 2011. Sea-level rise and its possible impacts given a “beyond 4 C world”in the twenty-first century. Philos. T. Roy. Soc. A 369, 161-181, https://doi.org/10.1098/rsta.2010.0291.
  • [35] O’Reilly, C. H., Czaja, A., 2015. The response of the Pacific storm track and atmospheric circulation to Kuroshio Extension variability, Q. J. Roy. Meteor. Soc. 141 (686), 52-66, https://doi.org/10.1002/qj.2334.
  • [36] Pasquini, A. I., Lecomte, K. L., Depetris, P. J., 2008. Climate change and recent water level variability in Patagonian proglacial lakes, Argentina. Global Planet. Change 63, 290-298.
  • [37] Philips, M. R., Rees, E. F., Thomas, T., 2013. winds, sea level and North Atlantic Oscilation (NAO) influences: An evaluation; Global Planet. Change 100, 145-152, https://doi.org/10.1016/j.gloplacha.2012.10.01.
  • [38] Pirazzoli, P. A., 2005. A review of possible eustatic, isostatic and tectonic contributions in eight late-Holocene relative sea-level histories from the Mediterranean area. Quaternary Sci. Rev. 24 (18-19), 1989-2001, https://doi.org/10.1016/j.quascirev.2004.06.026.
  • [39] Pugh, D. J., 1987. Tides, Surges and Mean Sea-Level: A Handbook for Engineers and Scientists. John Wiley, Chichester 472 pp.
  • [40] Sang, Y. F., 2013. A review on the applications of wavelet transform in hydrology time series analysis. Atmos. Res. 122, 8-15, https://doi.org/10.1016/j.atmosres.2012.11.003.
  • [41] Schlesinger, M. E., Ramankutty, N., 1994. An oscillation in the global climate system of period 65-70 years. Nature 367, 723-726.
  • [42] Seager, R., Harnik, N., Kushnir, Y., Robinson, W., Miller, J., 2003. Mechanisms of hemispherically symmetric climate variability. J. Climate 16, 2960-2978.
  • [43] Shaw, A. G. P., Tsimplis, M. N., 2010. The 18.6 yr nodal modulation in the tides of Southern European Coasts. Cont. Shelf Res. 30 (2), 138-151, https://doi.org/10.1016/j.csr.2009.10.006.
  • [44] SHOM, 2014. Caractérisation de 7 évènements de tempêtes de l’automne-hiver 2013-2014 N°001/2014.
  • [45] Small, R. J., Tomas, R. A., Bryan, F. O., 2014. Storm track response to ocean fronts in a global high-resolution climate model. Clim. Dynam. 43, 805-828, https://doi.org/10.1007/s00382-013-1980-9.
  • [46] Tomasin, A., Pirazzoli, P. A., 2008. Extreme Sea Levels in the English Channel: Calibration of the Joint Probability Method. J. Coastal Res. 24, 1-13, https://doi.org/10.2112/07-0826.1.
  • [47] Torrence, C., Compo, G. P., 1998. A practical guide to wavelet analysis. B. Am. Meteorol. Soc. 79, 61-78, https://doi.org/10.1175/1520-0477(1998)079(0061:APGTWA).0.CO;2.
  • [48] Trigo, R. M., Osborn, T. J., Corte-Real, J., 2002. The North Atlantic Oscillation influence on Europe: climate impacts and associated physical mechanisms. Clim. Res. 20, 9-17, https://doi.org/10.3354/cr020009.
  • [49] Trisimplis, M. N., Josey, S. A., 2001. Forcing of the Mediterranean Sea by atmospheric oscillations over the North Atlantic. Geophys. Res. Lett. 28, 803-806.
  • [50] Tsimplis, M. N., Woodworth, P. L., 1994. The global distribution of the seasonal sea level cycle calculated from coastal tide gauge data. J. Geoph. Res. 99 (C8), 16031-16039.
  • [51] Turki, I., Laignel, B., Chevalier, L., Massei, N., Costa, S, 2015b. On the Investigation of the Sea Level Variability in Coastal Zones using SWOT Satellite Mission: example of the Eastern English Channel (Western France). IEEE J. Sel. Top. Appl. 8 (4), 1564-1569, https://doi.org/10.1109/JSTARS.2015.2419693.
  • [52] Turki, I., Laignel, B., Kakeh, N., Chevalier, L., Costa, S., 2015a. Methodology for Filling gaps and Forecast in sea level: application to the eastern English Channel and the North Atlantic Sea (western France). Ocean Dynam. 65 (9-10), 1221-1234, https://doi.org/10.1007/s10236-015-0824-z.
  • [53] Turki, I., Massei, N., Laignel, B., 2019. Linking Sea Level Dynamic and Exceptional Events to Large-scale Atmospheric Circulation Variability: Case of Seine Bay, France. Oceanologia 61 (3), 321-330, https://doi.org/10.1016/j.oceano.2019.01.003.
  • [54] Vousdoukas, M. I., Mentaschi, L., Voukouvalas, E., Verlaan, M., Feyen, L., 2017. Extreme sea levels on the rise along Europe’s coasts. Earth’s Future 5 (3), 304-323, https://doi.org/10.1002/2016EF000505.
  • [55] Wang, C., 2001. Atlantic Climate Variability and Its Associated Atmospheric Circulation Cells. J. Climate 15, 1516-1536.
  • [56] Williams, J., Irazoqui Apecechea, M., Saulter, A., Horsburgh, K. J., 2018. Radiational tides: their double-counting in storm surge forecasts and contribution to the Highest Astronomical Tide. Ocean Sci. 14, 1057-1068, https://doi.org/10.5194/os-14-1057-2018.
  • [57] Wills, S. W., Thompson, D. W. J., Ciasto, L. M., 2016. On the Observed Relationships between Variability in Gulf Stream Sea Surface Temperatures and the Atmospheric Circulation over the North Atlantic. J. Climate 29, 3719-3730, https://doi.org/10.1175/JCLI-D-15-0820.1.
  • [58] Yan, Z., Tsimplis, M. N., Woolf, D., 2004. Analysis of the relationship between the North Atlantic Oscillation and sea-level changes in northwestern Europe. Int. J. Climatol. 24, 743-758, https://doi.org/10.1002/joc.1035.
  • [59] Zampieri, M., Toreti, A., Schindler, A., Escoccimarro, E., Gualdi, S., 2017. Atlantic multi-decadal oscillation influence on weather regimes over Europe and the Mediterranean in spring and summer. Global Planet. Change, 151, 92-100, https://doi.org/10.1016/j.gloplacha.2016.08.014.
  • [60] Zappa, G., Shaffrey, L. C., Hodges, K. I., Sansom, P., Stephenson, D. B., 2013. A multimodel assessment of future projections of North Atlantic and European cyclones in the CMIP5 climate models. J. Climate 26, 5846-5862, https://doi.org/10.1175/JCLI-D-12-00573.1.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f66e6d8b-44a2-4fac-80ff-6ddfe097d846
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.