PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Testing the vibration damping of a glass gatherer robot arm using a friction damper

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper describes a test stand along with a model of a lance used in glass works. A prototype friction damper was used for vibration damping of the lance. Experimental tests were conducted, whose aim was to determine operating conditions under which the damper will be the most effective. Damping was evaluated based on the damping decrement determined using the resonance curve for the first form of vibration of the lance. It was found that a friction damper has optimal values of preload force from the point of view of damping of the lance's resonant vibration.
Rocznik
Strony
240--248
Opis fizyczny
Bibliogr. 31 poz., rys., wykr.
Twórcy
  • Wrocław University of Technology, Lukasiewicza 5 Street, Building B-4, Poland
  • Wrocław University of Technology, Lukasiewicza 5 Street, Building B-4, Poland
  • Wrocław University of Technology, Lukasiewicza 5 Street, Building B-4, Poland
autor
  • Wrocław University of Technology, Lukasiewicza 5 Street, Building B-4, Poland
Bibliografia
  • [1] Wei Lian Qu, Zhao Hui Chen, You-Lin Xu, Dynamic analysis of wind-excited trust tower with friction dampers, Computers and Structures (79) (2001) 2817–2831.
  • [2] Hong-Nan Li, Gang Li, Experimental study of structure with ‘‘dual function’’ metallic dampers, Engineering Structures 29 (8) (2007) 1917–1928.
  • [3] Ali Akbar Golafshani, Amin Gholizad, Friction damper for vibration control offshore steel jacket platforms, Journal of Constructional Steel Research (65) (2009) 180–187.
  • [4] Zbigniew Skup, Analysis of damping of vibrations through a frictional damper, Journal of Theoretical and Applied Mechanics (48) (2010) 465–478.
  • [5] Marek Stembalski, Wacław Skoczyński, Andrzej Roszkowski, Numerical model of frictional damper for glass making robot lance, Journal of Kones 19 (1) (2012) 391–398.
  • [6] Lyan-Ywan Lu, Semi-active modal control for seismic structures with variable friction dampers, Engineering Structures 26 (4) (2004) 437–454.
  • [7] Georges Bossis, Sandris Lacis, Alain Meunier, Olga Yu Volkova, Magnetorheological fluids, Journal of Magnetism and Magnetic Materials 252 (2002) 224–228.
  • [8] Jan Hogsberg, Steen Krenk, Energy dissipation control of magneto-rheological damper, Probabilistic Engineering Mechanics 23 (1–2) (2008) 188–197.
  • [9] Kyung-In Jang, Byung-Kwon Min, Jongwon Seok, A behavior model of magnetorheological fluid on direct shear mode, Journal of Magnetism and Magnetic Materials 323 (10) (2011) 1324–1329.
  • [10] Tammy M. Simon, Fernando Reitich, Mark R. Jolly, Ito Kazufumi, Banks Harvey Thomas, The effective magnetic properties of magnetorheological fluids, Mathematical and Computer Modelling 33 (1–3) (2001) 273–284.
  • [11] Zhu Weiqiu, Luo Mingliang, Dong Lida, Semi-active control of wind excited building structures using MR/ER dampers, Probabilistic Engineering Mechanics 19 (3) (2004) 279–285.
  • [12] Henry A. Sodano, Daniel J. Inman, Non-contact vibration control system employing an active eddy current damper, Journal of Sound and Vibration 305 (4–5) (2007) 596–613.
  • [13] Dominguez-Gonzalez Aurelio Dominguez, Sedaghati Ramin, Stiharu Ion, Modeling and application of MR dampers in semi-adaptive structures, Computers and Structures 86 (3–5) (2008) 407–415.
  • [14] Marek Stembalski, Paweł Preś, Wacław Skoczyński, Determination of the friction coefficient as a function of sliding speed and normal pressure for steel C45 and steel 40HM, Archives of Civil and Mechanical Engineering 13 (4) (2013) 444–448.
  • [15] Andrzej Roszkowski, Wacław Skoczyński, Glass Making Robot, Magnetorheological fluid damper, Inżynieria Maszyn 13 (3/4) (2008) 122–132.
  • [16] Cao Hong, Li Qiusheng, New control strategies for active tuned mass damper system, Computers & Structures 82 (27) (2004) 2341–2350.
  • [17] Chae-Wook Lim, Active vibration control of the linear structure with an active mass damper applying robust saturation controller, Mechatronics 18 (8) (2008) 391–399.
  • [18] Mary E.F. Kasarda, Mendoza Hector, Kirk Robley Gordon, Wicks Alfred, Reduction of subsynchronous vibrations in a single-disk rotor using an active magnetic damper, Mechanics Research Communications 31 (6) (2004) 689–695.
  • [19] Rudiger Korlin, Uwe Starossek, Wind tunnel test of an active damper for bridge decks, Journal of Wind Engineering and Industrial Aerodynamics 95 (4) (2007) 267–277.
  • [20] Kozanecka Dorota, Kozanecki Zbigniew, Łagodziński Jakub, Active magnetic damper in a Power transmission system, Communications in Nonlinear Science and Numerical Simulation 16 (5) (2011) 2273–2278.
  • [21] Osman E. Ozbulut, Maryam Bitaraf, Stefan Hurlebaus, Adaptive control of base-isolated structures against near-field earthquakes using variable friction dampers, Engineering Structures 33 (12) (2011) 3143–3154.
  • [22] Henry A. Sodano, Daniel J. Inman, Non-contact vibration control system employing an active eddy current damper, Journal of Sound and Vibration 305 (4–5) (2007) 596–613.
  • [23] Xu You-Lin, Parametric study of active mass dampers for wind-excited tall buildings, Engineering Structures 18 (1) (1996) 64–76.
  • [24] Yoshida Hiroki, K. Hirose, Sakagami Yukio, Active damper of magnetically suspended pellet for laser fusion scheme, Fusion Engineering and Design 44 (1–4) (1999) 467–470.
  • [25] Ji-Hun Park, Kyung-Won Min, Lan Chung, Sung-Kyung Lee, Hyoung-Seop Kim, Byoung-Wook Moon, Equivalent linearization of a friction damper-brace system based on the probability distribution of the extremal displacement, Engineering Structures (29) (2007) 1226–1237.
  • [26] Imad H. Mualla, Borislav Belev, Performance of steel frames with a new friction damper device under earthquake excitation, Engineering Structures (24) (2002) 365–371.
  • [27] Zbigniew Dżygadło, Witold Perkowski, Research of dynamics of a supercritical propulsion shaft equipped with a dry friction damper, Aircraft Engineering and Aerospace Technology 74 (5) (2002) 447–454.
  • [28] Zheng Lu, Xilin Lu, Sami F. Masri, Studies of the performance of particle dampers under dynamic loads, Journal of Sound and Vibration 329 (26) (2009) 5415–5433.
  • [29] Seshasayee Ankireddi, Henry T.Y. Yang, Directional mass dampers for buildings under wind or seismic loads, Journal of Wind Engineering and Industrial Aerodynamics 85 (2) (2000) 119–144.
  • [30] Kailai Deng, Peng Pan, Chaoyi Wang, Development of crawler steel damper for bridges, Journal of Constructional Steel Research 85 (2013) 140–150.
  • [31] Andrzej Roszkowski, Wacław Skoczyński, Piotr Górski, A numerical model of the robot glass pick-up lance with magnetorheological dampers, in: Produkcji Inżynieria. ‘‘Wiedza – Wizja – Programy Ramowe’’, Centre for Advanced Manufacturing Systems, Institute of Production Engineering and Automation at the Wrocław University of Technology, Oficyna Wydawnicza PWr, Wrocław, 2006, pp. 11–16.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f66d37b1-cdf7-4448-8aa0-e7e91139df14
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.