Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mechanical Properties of Textile-Reinforced Composites with a 3D Printed Core

Warianty tytułu
Języki publikacji
The article discusses the mechanical properties of glass fiber epoxy composites with three types of textile structures. Braided, knitted and woven sleeves were placed on a 3D printed flat core and impregnated with resin using the vacuum bag method. The 3-point flexural and tensile tests were performed. The results were compared with those of 3D-printed flat bars and proved that woven textile structures increase the strength and modulus of elasticity, whereas braided and knitted structures only increase the moduli. The advantages, drawbacks and failure modes of each reinforcement structure are also discussed including the drapeability on the spatial core.
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
  • Institute of Architecture of Textiles, Faculty of Material Technologies and Textile Design, Lodz University of Technology, Zeromskiego 116, 90-543 Lodz, Poland
  • Institute of Architecture of Textiles, Faculty of Material Technologies and Textile Design, Lodz University of Technology, Zeromskiego 116, 90-543 Lodz, Poland
  • Department of Strength of Materials, Faculty of Mechanical Engineering, Lodz University of Technology, Stefanowskiego 1/15, 90-924 Lodz, Poland
  • 1. Ngo TD, Kashani A, Imbalzano G, Nguyen KTQ, Hui D. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Compos Part B Eng. 2018 Jun;143:172–96.
  • 2. Additive Manufacturing by Technology by Printer Type by Material by Application by Component and by End-User - Global Opportunity Analysis And Industry Forecast 2022-2030 [Internet]. Research and Markets. [cited 2023 May 21]. Available from:
  • 3. ISO/ASTM 52900:2021 - Additive manufacturing — General principles — Fundamentals and vocabulary [Internet]. ISO. [cited 2023 May 21]. Available from:
  • 4. Li L, Liu W, Sun L. Mechanical characterization of 3D printed continuous carbon fiber reinforced thermoplastic composites. Compos Sci Technol. 2022 Aug; 227:109618.
  • 5. Elkaseer A, Chen KJ, Janhsen JC, Refle O, Hagenmeyer V, Scholz SG. Material jetting for advanced applications: A state-of-the-art review, gaps and future directions. Addit Manuf. 2022 Dec; 60:103270.
  • 6. Pagac M, Hajnys J, Ma QP, Jancar L, Jansa J, Stefek P, et al. A Review of Vat Photopolymerization Technology: Materials, Applications, Challenges, and Future Trends of 3D Printing. Polymers. 2021 Feb 17; 13(4):598.
  • 7. Mostafaei A, Elliott AM, Barnes JE, Li F, Tan W, Cramer CL, et al. Binder jet 3D printing—Process parameters, materials, properties, modeling, and challenges. Prog Mater Sci. 2021 Jun; 119:100707.
  • 8. Zhuo P, Li S, Ashcroft IA, Jones IA. Continuous fibre composite 3D printing with pultruded carbon/PA6 commingled fibres: Processing and mechanical properties. Compos Sci Technol. 2022 Apr;221:109341.
  • 9. He Q, Wang H, Fu K, Ye L. 3D printed continuous CF/PA6 composites: Effect of microscopic voids on mechanical performance. Compos Sci Technol. 2020 May;191:108077.
  • 10. Chou TW. Two-dimensional textile structural composites. In: Microstructural Design of Fiber Composites [Internet]. Cambridge: Cambridge University Press; 1992. p. 285–373. (Cambridge Solid State Science Series). Available from:
  • 11. Poniecka A, Barburski M, Ranz D, Cuartero J, Miralbes R. Comparison of Mechanical Properties of Composites Reinforced with Technical Embroidery, UD and Woven Fabric Made of Flax Fibers. Materials. 2022 Oct 25;15(21):7469.
  • 12. O’Connor HJ, Dickson AN, Dowling DP. Evaluation of the mechanical performance of polymer parts fabricated using a production scale multi jet fusion printing process. Addit Manuf. 2018 Aug;22:381–7.
  • 13. ISO 14125:1998 - Fibre-reinforced plastic composites — Determination of flexural properties.
  • 14. ISO 527-4:2021 - Plastics - Determination of tensile properties - Part 4: Test conditions for isotropic and orthotropic fibre-reinforced plastic composites.
  • 15. ISO 527-1:2019 - Plastics - Determination of tensile properties - Part 1: General principles.
  • 16. Barburski M, Masajtis J. Modelling of the change of structure of woven fabric under mechanical loading. Fibres Text East Eur. 2009 Jan;No 1(72).
  • 17. Gliszczynski A, Kubiak T. Progressive failure analysis of thin-walled composite columns subjected to uniaxial compression. Compos Struct. 2017 Jun;169:52–61.
  • 18. Liu D, Tang M, Yan J. Comparative study of the tensile properties of 2D and UD over-braided multilayer composites. Compos Sci Technol. 2021 Jul;210:108817.
  • 19. Vanleeuw B, Carvelli V, Lomov S, Barburski M, Vuure AW. Deformability of a Flax Reinforcement for Composite Materials. Key Eng Mater. 2014 May;611–612:257–64.
  • 20. Bullock RE. Strength Ratios of Composite Materials in Flexure and in Tension. J Compos Mater. 1974 Apr;8(2):200–6.
  • 21. Vanleeuw B, Carvelli V, Barburski M, Lomov SV, Van Vuure AW. Quasi-unidirectional flax composite reinforcement: Deformability and complex shape forming. Compos Sci Technol. 2015 Apr;110:76–86.
  • 22. Lemmi TSh, Barburski M, Samuel BT. Analysis of Mechanical Properties of Unidirectional Flax Roving and Sateen Weave Woven Fabric-Reinforced Composites. Autex Res J. 2021 Jun 1;21(2):218–23.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.