PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Predictive Analysis of Ceramic Waste Modified Concrete Properties Using ANN and Linear Regression Algorithm

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, concrete modified with ceramic waste was modelled. The ceramic waste percentage ranged from 2.5% to 5% to 10% to 12.5% to 15% to 17.5% to 20%. Modelling was done for the concrete's tensile strength and compressive strength. Regression modelling and artificial neural networks were used as prediction methods for concrete strength. The models developed in this study to predict the mechanical properties of concrete were evaluated using Mean absolute error, coefficient of determination and root mean square error. The R2 value for the ANN model was determined to be 0.97, compared to 0.95 for the linear regression model. For the one-week, two-week, and four-week prediction models, RMSE values were 1.1 MPa, 1.15 MPa, and 1.05 MPa for the ANN model for one-week, two-week and four-week, respectively, while the linear regression model displayed the RMSE values of 1.08 MPa, 1.22 MPa, and 1.25 MPa. The R2 values for ANN and LR models were estimated to be 0.87 and 0.7, respectively, for predicting split tensile strength. This study will conclude that the artificial neural network model has high accuracy. It can be employed in modelling the mechanical properties of ceramic-modified concrete.
Rocznik
Tom
Strony
273--283
Opis fizyczny
Bibliogr. 14 poz., rys., tab.
Twórcy
  • Department of Civil Engineering, King Khalid University, Abha, Saudi Arabia
Bibliografia
  • Algaifi, H.A., Alqarni, A.S., Alyousef, R., Bakar, S.A., Ibrahim, M.H.W., Shahidan, S., Ibrahim, M., Salami, B.A. (2021). Mathematical prediction of the compressive strength of bacterial concrete using gene expression programming. Ain Shams Engineering Journal, 12(4), 3629-3639. https://doi.org/10.1016/j.asej.2021.04.008
  • Cladera, A., Marí, A., Ribas, C. (2021). Mechanical model for the shear strength prediction of corrosion-damaged reinforced concrete slender and non slender beams. Engineering Structures, 247, 113163. https://doi.org/10.1016/j.engstruct.2021.113163
  • Ikumi, T., Galeote, E., Pujadas, P., de la Fuente, A., López-Carreño, R.D. (2021). Neural network-aided prediction of post-cracking tensile strength of fibre-reinforced concrete. Computers and Structures, 256, 106640. https://doi.org/10.1016/j.compstruc.2021.106640
  • Javed, M.F., Khan, M., Fawad, M., Alabduljabbar, H., Najeh, T., Gamil, Y. (2024). Comparative analysis of various machine learning algorithms to predict strength properties of sustainable green concrete containing waste foundry sand. Scientific Reports, 14(1), 1-26. https://doi.org/10.1038/s41598-024-65255-2
  • Kuruc, M., Štefunková, Z. (2024). Properties of Olive Stones with a View to Their use as Lightweight Aggregate in Construction Mortars. Slovak Journal of Civil Engineering, 32(1), 52-57. https://doi.org/10.2478/sjce-2024-0007
  • Murad, Y.Z., Hunifat, R., AL-Bodour, W. (2020). Interior Reinforced Concrete Beam-to-Column Joints Subjected to Cyclic Loading: Shear Strength Prediction using Gene Expression Programming. Case Studies in Construction Materials, 13, e00432. https://doi.org/10.1016/j.cscm.2020.e00432
  • Oyejobi, D.O., Jameel, M., Sulong, N.H.R., Raji, S.A., Ibrahim, H.A. (2020). Prediction of optimum compressive strength of lightweight concrete containing Nigerian palm kernel shells. Journal of King Saud University – Engineering Sciences, 32(5), 303-309. https://doi.org/10.1016/j.jksues.2019.04.001
  • Poorarbabi, A., Ghasemi, M., Azhdary Moghaddam, M. (2020). Concrete compressive strength prediction using non-destructive tests through response surface methodology. Ain Shams Engineering Journal, 11(4), 939-949. https://doi.org/10.1016/j.asej.2020.02.009
  • Rajagopal, M.R., Malarvizhi, K., Swamy, S.T., Sarode, D.G.C., Gorode, S.B., Karthic, E.S. (2024). Estimation of Strength Properties of Self Compacting Concrete by Using Artificial Intelligence and Machine Learning Techniques. Educational Administration Theory and Practices, 30(5), 10739-10743. https://doi.org/10.53555/kuey.v30i5.4828
  • Ray, S., Haque, M., Rahman, M.M., Sakib, M.N., Al Rakib, K. (2021). Experimental investigation and SVM-based prediction of compressive and splitting tensile strength of ceramic waste aggregate concrete. Journal of King Saud University – Engineering Sciences, 36(2), 112-121. https://doi.org/10.1016/j.jksues.2021.08.010
  • Ray, S., Rahman, M.M., Haque, M., Hasan, M.W., Alam, M.M. (2021). Performance evaluation of SVM and GBM in predicting compressive and splitting tensile strength of concrete prepared with ceramic waste and nylon fiber. Journal of King Saud University – Engineering Sciences, 35(2), 92-100. https://doi.org/10.1016/j.jksues.2021.02.009
  • Ridha, M.M.S., Sarsam, K.F., Al-Shaarbaf, I.A.S. (2018). Experimental Study and Shear Strength Prediction for Reactive Powder Concrete Beams. Case Studies in Construction Materials, 8(March), 434-446. https://doi.org/10.1016/j.cscm.2018.03.002
  • Singh, S., Bano, S., Singh, V., Singh, A., Kumar, A., Singh, S.N. (2024). An investigative inquiry into harnessing the capabilities of machine learning for the assessment of compressive strength in red mud-based concrete enriched with fly ash as a viable road construction constituent. Asian Journal of Civil Engineering, 25(2), 1571-1585. https://doi.org/10.1007/s42107-023-00862-4
  • Yasmin, M. (2021). Compressive strength prediction for concrete modified with nanomaterials. Case Studies in Construction Materials, 15(July), e00660. https://doi.org/10.1016/j.cscm.2021.e00660
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f6687d13-75a4-4b58-ab9f-8580ad0a6682
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.