PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Chlorella vulgaris auto-flocculation in wastewater treatment. Preface to granulation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Microalgae wastewater treatment technology has not only the function of wastewater treatment but also biomass production, resource recovery, and biological carbon fixation with significant economic and environmental benefits. Good sedimentation of microalgae cells is the key to realize wastewater treatment and microalgae cell proliferation. In this study, short settling time in sequence batch reactors (SBRs) was utilizable as an environmental selection pressure to promote the auto-flocculation of Chlorella vulgaris treating synthetic domestic wastewater. After 60 days of operation, bacteria-microalgae consortia formed in the reactors, improving the settling efficiencies. Microalgae cultivation reactor with 30 min settling time had the largest flocs size and highest settling efficiency. Bacteria-microalgae granular sludge had a relatively high content of P, Fe, Mg, and Ca elements that both bacteria and microalgae coexisted and adhered to each other. The dominant bacteria distribution of bacteria-microalgae granular sludge was like that of aerobic granular sludge, which implied bacteria played a vital role in Chlorella vulgaris auto-flocculation. Lastly, the mechanism of Chlorella vulgaris auto-flocculation in wastewater treatment was interpreted.
Rocznik
Strony
45--56
Opis fizyczny
Bibliogr. 32 poz., rys.
Twórcy
autor
  • Institute of Architectural Engineering, Zaozhuang University, Key Laboratory of Urban-Rural Water Environment Pollution Control and Ecological Restoration, Zaozhuang Shandong, 277100 China
  • Institute of Architectural Engineering, Zaozhuang University, Key Laboratory of Urban-Rural Water Environment Pollution Control and Ecological Restoration, Zaozhuang Shandong, 277100 China
autor
  • Institute of Architectural Engineering, Zaozhuang University, Key Laboratory of Urban-Rural Water Environment Pollution Control and Ecological Restoration, Zaozhuang Shandong, 277100 China
autor
  • Institute of Architectural Engineering, Zaozhuang University, Key Laboratory of Urban-Rural Water Environment Pollution Control and Ecological Restoration, Zaozhuang Shandong, 277100 China
Bibliografia
  • [1] CHRISTENSON L., SIMS R., Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts, Biotechnol. Adv., 2011, 29, 686–702. DOI: 10.1016/j.biotechadv.2011.05.015.
  • [2] WIJFFELS R.H., BARBOSA M.J., An outlook on microalgal biofuels, Sci., 2010, 329, 796–799. DOI: 10.1126/science.1189003.
  • [3] FAYAD N.A., YEHYA T., AUDONNET F., VIAL C., Harvesting of microalgae Chlorella vulgaris using electro-coagulation-flocculation in the batch mode, Algal Res., 2017, 25, 1–11. DOI: 10.1016/j.algal.2017.03.015.
  • [4] PRAGYA N., PANDEY K.K., SAHOO P.K., A review on harvesting, oil extraction and biofuels production technologies from microalgae, Renew. Sust. Energ. Rev., 2013, 24 (10), 159–171. DOI: 10.1016/j.rser.2013.03.034.
  • [5] TIRON O., BUMBAC C., MANEA E., STEFANESCU M., NITA LAZAR M., Overcoming microalgae harvesting barrier by activated algae granules, Sci. Rep. UK., 2017, 7 (1), 4646. DOI: 10.1038/s41598-017-05027-3.
  • [6] SEPÚLVEDA-MARDONES M., CAMPOS J.L., MAGRÍ A., GLADYS V., Moving forward in the use of aerobic granular sludge for municipal wastewater treatment: an overview, Rev. Environ. Sci. Bio., 2019, 18 (4), 741–769. DOI: https://doi.org/10.1007/s11157-019-09518-9.
  • [7] TIRON O., BUMBAC C., PATROESCU V.I., STEFANESCU M., Activated algae granulation: a biological solution for efficient microalgae harvesting, J. Biotechnol., 2015, 208, S19. DOI: 10.1016/j.jbiotec.2015.06.046.
  • [8] TIRON O., BUMBAC C., PATROESCU V.I., BADESCU V.R., POSTOLACHE C., Granular activated algae for wastewater treatment, Water Sci. Technol., 2015, 71 (6), 832–839. DOI: 10.2166/wst.2015.010
  • [9] APHA, Standard Methods for the Examination of Water and Wastewater, 21st Ed., American Public Health Administration, Washington 2005.
  • [10] ADAV S.S., LEE D.J., SHOW K.Y., TAY J.H., Aerobic granular sludge. Recent advances, Biotechnol. Adv., 26 (5), 411–423, https://doi.org/10.1016/j.biotechadv.2008.05.002.
  • [11] GAO D.W., LIU L., LIANG H., WU W.M., Aerobic granular sludge: characterization, mechanism of granulation and application to wastewater treatment, Crit. Rev. Biotechnol., 2011, 31 (2), 137–152. DOI: 10.3109/07388551.2010.497961.
  • [12] QIN L., TAY J.H., LIU Y., Selection pressure is a driving force of aerobic granulation in sequencing batch reactors, Process Biochem., 2004, 39 (5), 579–584. DOI: 10.1016/S0032-9592 (03)00125-0.
  • [13] QIN L., LIU Y., TAY J.H., Effect of settling time on aerobic granulation in sequencing batch reactor, Biochem. Eng. J., 2004, 21 (1), 47–52. DOI: 10.1016/j.bej.2004.03.005.
  • [14] SIRIN S., TROBAJO R., IBANEZ C., SALVADÓ J., Harvesting the microalgae Phaeodactylum tricornutum, with polyaluminum chloride, aluminium sulphate, chitosan and alkalinity-induced flocculation, J. Appl. Phycol., 2012, 24 (5), 1067–1080. DOI: 10.1007/s10811–011-9736-6.
  • [15] VAN D.H.S., VERVAEREN H., DESMET S., BOON N., Bioflocculation of microalgae and bacteria combined with flue gas to improve sewage treatment, New Biotechnol., 2012, 29 (1), 23–31. DOI: 10.1016/j.nbt.2011.04.009.
  • [16] RENUKA N., SOOD A., RATHA S.K., PRASANNA R., AHLUWALIA A.S., Evaluation of microalgal consortia for treatment of primary treated sewage effluent and biomass production, J. Appl. Phycol., 2013, 25 (5), 1529–1537. DOI: 10.1007/s10811-013-9982-x.
  • [17] JIANG H.L., TAY J.H., LIU Y., TAY T.L., Ca2+ augmentation for enhancement of aerobically grown microbial granules in sludge blanket reactors, Biotechnol. Lett., 2003, 25 (2), 95–99. DOI: 10.1023/A:1021967914544.
  • [18] YANG S.F., LI X.Y., YU H.Q., Formation and characterisation of fungal and bacterial granules under different feeding alkalinity and pH conditions, Process Biochem., 2008, 43 (1), 8–14. DOI: 10.1016/j.procbio.2007.10.008.
  • [19] WILÉN B.M., ONUKI M., HERMANSSON M., LUMLEY D., MINO T., Microbial community structure in activated sludge floc analysed by fluorescence in situ hybridization and its relation to floc stability, Water Res., 2008, 42 (8), 2300–2308. DOI: 10.1016/j.watres.2007.12.013
  • [20] LI Z.H., ZHANG T., LI N., WANG X.C., Granulation of filamentous microorganisms in a sequencing batch reactor with saline wastewater, J. Environ. Sci., China, 2010, 22 (1), 62–67. DOI: 10.1016/S1001–0742 (09)60075-9.
  • [21] SUKENIK A., SHELEF G., Algal auto-flocculation verification and proposed mechanism, Biotechnol. Bioeng., 1984, 26 (2), 142–147. DOI: 10.1002/bit.260260206.
  • [22] VANDAMME D., FOUBERT I., FRAEYE I., MEESSCHAERT B., MUYLAERT K., Flocculation of Chlorella vulgaris, induced by high pH. Role of magnesium and calcium and practical implications, Biores. Technol., 2012, 105 (2), 114–119. DOI: 10.1016/j.biortech.2011.11.105.
  • [23] SALIM S., KOSTERINK N.R., WACKA N.D.T., VERMUE M.H., WIJFFELS R.H., Mechanism behind auto-flocculation of unicellular green microalgae Ettlia texensis, J. Biotechnol., 2014, 174 (1), 34–38. DOI: 10.1016/j.jbiotec.2014.01.026.
  • [24] RAMESH A., LEE D.J., HONG S.G., Soluble microbial products (SMP) and soluble extracellular polymeric substances (EPS) from wastewater sludge, Appl. Microbiol. Biot., 2006, 73 (1), 219–225. DOI: 10.1007/s00253-006-0446-y.
  • [25] CORSINO S.F., CAPODICI M., TORREGROSSA M., VIVIANI G., Physical properties and extracellular polymeric substances pattern of aerobic granular sludge treating hypersaline wastewater, Biores. Technol., 2017, 229, 152–159. DOI: 10.1016/j.biortech.2017.01.024.
  • [26] LI X.Y., YANG S.F., Influence of loosely bound extracellular polymeric substances (EPS) on the flocculation, sedimentation and dewaterability of activated sludge, Water Res., 2007, 41 (5), 1022–1030. DOI: 10.1016/j.watres.2006.06.037.
  • [27] SHENG G.P., YU H.Q., LI X.Y., Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems. A review, Biotechnol. Adv., 2010, 28 (6), 882–894. DOI: 10.1016/j.biotechadv.2010.08.001.
  • [28] ZHANG N., XU B., QI F., Effect of phosphate loading on the generation of extracellular organic matters of Microcystis Aeruginosa, and its derived disinfection by-products, Water Air Soil Poll., 2016, 227 (8), 264–276. DOI: 10.1007/s11270-016-2976-y.
  • [29] BOONCHAI R., KAEWSUK J., SEO G., Effect of nutrient starvation on nutrient uptake and extracellular polymeric substance for microalgae cultivation and separation, Desalin. Water Treat., 2014, 55 (2), 1–8. DOI: 10.1080/19443994.2014.939501.
  • [30] GE S.J., CHAMPAGNE P., Nutrient removal, microalgal biomass growth, harvesting and lipid yield in response to concentrate wastewater loadings, Water Res., 2015, 88, 604–612. DOI: 10.1016/j.watres.2015.10.054.
  • [31] LEE J., CHO D.H., RAMANAN R., KIM B.H., OH H.M., KIM H.S., Microalgae-associated bacteria play a key role in the flocculation of Chlorella vulgaris, Bioresource Technol., 2013, 131 (2), 195–201. DOI: 10.1016/j.biortech.2012.11.130.
  • [32] BHATTACHARYA A., MATHUR M., KUMAR P., PRAJAPATI S.K., MALIK A., A rapid method for fungal assisted algal flocculation: critical parameters and mechanism insights, Algal Res., 2017, 21, 42–51. DOI: 10.1016/j.algal.2016.10.022.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f6680793-9ae7-4554-865c-c0f0c7b9ef76
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.