PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Engineering Properties of Foamed Concrete Reinforced with Sustainable Bamboo Fibre

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The consumption of foamed concrete (FC) in conjunction with the incorporation of natural fibre is recognized as an outstanding effort in promoting sustainable practices. This effort is aimed at reducing greenhouse gas emissions and the impact it leaves behind on the environment. The goal of this experiment is to discover the viability of incorporating raw bamboo fibre (BF) into the fabrication of 1000 kg/m3 density FC. The shrinkage, flexural, compressive, and tensile strengths of the material were the four characteristics that were considered throughout the analysis. The weight fractions of BF that were utilized were 0.0%, 0.1%, 0.2%, 0.3%, and 0.4% respectively. According to the results, the FC-BF composites’ drying shrinkage, compressive, flexural, and tensile strengths were best achieved when 0.3% BF was present. This was caused by the BF’s adhesion to the cementitious matrix of the FC. Additionally, BF functioned as an anti-micro crack that prevented FC from developing internally induced microcracks and cracks.
Twórcy
  • Nawroz University, Department of Civil Engineering, College of Engineering, Kurdistan Region, Iraq
  • Universiti Sains Malaysia, School of Housing, Building and Planning, 11800, Penang, Malaysia
  • Universiti Malaysia Perlis (UniMAP), Universiti Malaysia Perlis 01000 Perlis, Faculty of Chemical Engineering & Technology, Malaysia
  • Universiti Tun Hussein Onn Malaysia (UTHM), Faculty of Technology Management and Business, Department of Construction Management, Parit Raja, Batu Pahat, Johor 86400, Malaysia
  • Universiti Malaysia Perlis (UniMAP), Universiti Malaysia Perlis 01000 Perlis, Faculty of Mechanical Engineering & Technology, Malaysia
  • Częstochowa University of Technology, Faculty of Production Engineering and Materials Technology, Department of Physics, 19 Armii Krajowej Av., 42-200 Częstochowa, Poland
Bibliografia
  • [1] A.A. Aliabdo, M. Abd Elmoaty, E.M. Auda, Re-use of waste marble dust in the production of cement and concrete. Construct. Build. Mater. 50, 28-41 (2014). DOI: https://doi.org/10.1016/j.conbuildmat.2013.09.005
  • [2] N.M. Ibrahim, R. Che Amat, M. Abdul Rahim, N.L. Rahim, A.R. Abdul Razak, Reclamation and Reutilization of Incinerator Ash in Artificial Lightweight Aggregate. Arch. Metall. Mater. 67 (1), 269-275 (2022). DOI: https://doi.org/10.24425/amm.2022.137501
  • [3] M.N.M. Nawi, W.N. Osman, M.K. Rofie, A. Lee, Supply chain management (SCM): Disintegration team factors in Malaysian Industrialised Building System (IBS) construction projects. Int. J. Supply Chain Manag. 7 (1), 140-143 (2018).
  • [4] M.S. Savadkoohi, M. Reisi, Environmental protection based sustainable development by utilization of granite waste in Reactive Powder Concrete. J. Clean. Prod. 266, 121973 (2020). DOI: https://doi.org/10.1016/j.jclepro.2020.121973
  • [5] S. Ganesan, A.A.I. Che, N. Sani, Performance of polymer modified mortar with different dosage of polymeric modifier. MATEC Web Conf. 15, 01039 (2014). DOI: http://dx.doi.org/10.1051/matecconf/20141501039
  • [6] M. Arivoli, R. Malathy, Optimization of Packing density of M30 Concrete with Steel Slag as Coarse Aggregate Using Fuzzy Logic. Arch. Metall. Mater. 62 (3), 1903-1908 (2017). DOI: http://doi.org/10.1515/amm-2017-0288
  • [7] R. Abd Razak, S.N.S. Sy Izman. M.M.A.B. Abdullah, Z. Yahya, A. Abdullah, R. Mohamed, Properties and Morphology of Fly Ash Based Alkali Activated Material (AAM) Paste Under Steam Curing Condition. Arch. Metall. Mater. 68 (2), 785-789 (2023). DOI: https://doi.org/10.24425/amm.2023.142462
  • [8] M. Nowak, Z. Nowak, R.B. Pęcherski, M. Potoczek, R.E. Śliwa, Assessment of Failure Strength of Real Alumina Foams with Use of the Periodic Structure Model. Arch. Metall. Mater. 63 (4), 1903-1908 (2018). DOI: http://doi.org/10.24425/amm.2018.125122
  • [9] A.M.J. Esruq-Labin, A.I. Che-Ani, N.M. Tawil, M.N.M. Nawi, Criteria for Affordable Housing Performance Measurement: A Review. E3S Web Conf. 3, 01003 (2014). DOI: https://doi.org/10.1051/e3sconf/20140301003
  • [10] R. Szabó, I. Gombkötő, M. Svéda, G. Mucsi, Effect of Grinding Fineness of Fly Ash on the Properties of Geopolymer Foam. Arch. Metall. Mater. 62 (2B), 1257-1261 (2017). DOI: http://doi.org/10.1515/amm-2017-0188
  • [11] M. Ibrahim, W.M. Wan Ibrahim, M.M.A.B. Abdullah, A.S. Sauffi, P. Vizureanu, Effect of Solid-To-Liquids and Na2SiO3-To-NaOh Ratio on Metakaolin Membrane Geopolymers. Arch. Metall. Mater. 67 (2), 695-702 (2022). DOI: https://doi.org/10.24425/amm.2022.137808
  • [12] M.A. Tambichik, A.A. Abdul Samad, N. Mohamad, A.Z. Mohd Ali, M.Z. Mohd Bosro, M.A. Iman, Effect of combining Palm Oil Fuel Ash (POFA) and Rice Husk Ash (RHA) as partial cement replacement to the compressive strength of concrete. Int. J. Integr. Eng. 10 (8), 61-67 (2018). DOI: http://dx.doi.org/10.30880/ijie.2018.10.08.004
  • [13] E. Serri, M.Z. Suleiman, The influence of mix design on mechanical properties of oil palm shell lightweight concrete. J. Mater. Environ. Sci. 6, 607-612 (2015).
  • [14] W. Ashraf, Carbonation of cement-based materials: Challenges and opportunities. Construct. Build. Mater. 120, 558-570 (2016). DOI: https://doi.org/10.1016/j.conbuildmat.2016.05.080
  • [15] C. Kramer, T.L. Kowald, R.H.F. Trettin, Pozzolanic hardened three-phase-foams. Pozzolanic Hardened Three-Phase-Foams. Cement Concr. Res. 62, 44-51 (2015). DOI: https://doi.org/10.1016/j.cemconcomp.2015.06.002
  • [16] W. She, Y.I. Du, C. Miao, J. Liu, G. Zhao, J. Jiang, Y. Zhang, Application of organic and nanoparticle-modified foams in foamed concrete: Reinforcement and stabilization mechanisms. Cement Concr. Res. 106, 12-22 (2018). DOI: https://doi.org/10.1016/j.cemconres.2018.01.020
  • [17] M.H. Nensok, H. Awang, Investigation of Thermal, Mechanical and Transport Properties of Ultra Lightweight Foamed Concrete (UFC) Strengthened with Alkali Treated Banana Fibre. J. Adv. Res. Fluid Mech. Therm. Sci. 86, 123-139 (2021). DOI: http://dx.doi.org/10.37934/arfmts.86.1.123139
  • [18] M.R. Jones, K. Ozlutas, L.I. Zheng, Stability and instability of foamed concrete. Mag. Concr. Res. 68 (11), 542-549 (2016). DOI: https://doi.org/10.1680/macr.15.00097
  • [19] M.H. Nensok, H. Awang, Fresh state and mechanical properties of ultra-lightweight foamed concrete incorporating alkali treated banana fibre. J. Teknol. 84 (1), 117-128 (2022). DOI: https://doi.org/10.11113/jurnalteknologi.v84.16892
  • [20] S.S. Suhaili, M.A. Othuman Mydin, H. Awang, Influence of Mesocarp Fibre Inclusion on Thermal Properties of Foamed Concrete. J. Adv. Res. Fluid Mech. Therm. Sci. 87 (1), 1-11 (2021). DOI: https://doi.org/10.37934/arfmts.87.1.111
  • [21] M.R. Jones, A. McCarthy, Preliminary views on the potential of foamed concrete as a structural material. Mag. Concr. Res. 57 (1), 21-31 (2005). DOI: http://dx.doi.org/10.1680/macr.57.1.21.57866
  • [22] M.R. Ahmad, B. Chen, S.F.A. Shah, Investigate the influence of expanded clay aggregate and silica fume on the properties of lightweight concrete. Constr. Build. Mater. 220, 253-266 (2019). DOI: https://doi.org/10.1016/j.conbuildmat.2019.05.171
  • [23] O. Gencel, M. Nodehi, O.Y. Bayraktar, G. Kaplan, A. Benli, A. Gholampour, T. Ozbakkaloglu, Basalt fiber-reinforced foam concrete containing silica fume: An experimental study. Constr. Build. Mater. 326, 126861 (2022). DOI: https://doi.org/10.1016/j.conbuildmat.2022.126861
  • [24] A. Raj, D. Sathyan, K.M. Mini, Physical and functional characteristics of foam concrete: A review. Constr. Build. Mater. 221, 787-799 (2019). DOI: https://doi.org/10.1016/j.conbuildmat.2019.06.052
  • [25] A.M. Serudin, M.A. Othuman Mydin, A.N.A. Ghani, Influence of Fibreglass Mesh on Physical Properties of Lightweight Foamcrete. IIUM Eng. J. 22 (1), 23-34 (2021). DOI: http://dx.doi.org/10.31436/iiumej.v22i1.1446
  • [26] Y. Liu, Z. Wang, Z. Fan, J. Gu, Study on properties of sisal fiber modified foamed concrete. IOP Conf. Ser.: Mater. Sci. Eng. 744 (1), 012042 (2020). DOI: http://dx.doi.org/10.1088/1757-899X/744/1/012042
  • [27] L. Yu, Z. Liu, M. Jawaid, E.R. Kenawy, Mechanical properties optimization of fiber reinforced foam concrete. MATEC Web of Conf. 67, 03022 (2016). DOI: http://dx.doi.org/10.1051/matecconf/20166703022
  • [28] H. Awang, A.F. Roslan, Effects of fibre on drying shrinkage, compressive and flexural strength of lightweight foamed concrete. Adv. Mater. Res. 587, 144-149 (2012). DOI: http://dx.doi.org/10.4028/www.scientific.net/AMR.587.144
  • [29] K. Ramamurthy, E.K. Nambiar, G.I.S. Ranjani, A classification of studies on properties of foam concrete. Cem. Concr. Compos. 31 (6), 388-396 (2009). DOI: https://doi.org/10.1016/j.cemconcomp.2009.04.006
  • [30] M. Musa, A.N. Abdul Ghani, Influence of oil palm empty fruit bunch (EFB) fibre on drying shrinkage in restrained lightweight foamed mortar. Int. J. Innov. Techol. Exp. Eng. 8 (10), 4533-4538 (2019).
  • [31] N.M. Zamzani, A.N.A. Ghani, Effectiveness of ‘cocos nucifera linn’ fibre reinforcement on the drying shrinkage of lightweight foamed concrete. ARPN J. Eng. Appl. Sci. 14 (22), 3932-3937 (2019).
  • [32] A.M. Serudin, M.A. Othuman Mydin, A.N.A. Ghani, Effect of lightweight foamed concrete confinement with woven fiberglass mesh on its drying shrinkage. Rev. Ing. de Construccion. 36 (1), 21-28 (2021). DOI: http://dx.doi.org/10.4067/S0718-50732021000100021
  • [33] G. Krishnan, K.B. Anand, Industrial waste utilization for foam concrete. IOP Conf. Series Mater. Sci. Eng. 310 (1), 012062 (2018). DOI: https://doi.org/10.1088/1757-899X/310/1/012062
  • [34] R. Bayuaji, The influence of microwave incinerated rice husk ash on foamed concrete workability and compressive strength using Taguchi method. J. Teknol. 75, 265-274 (2015). DOI: https://doi.org/10.11113/jt.v75.3804
  • [35] D. Falliano, D. De Domenico, G. Ricciardi, E. Gugliandolo, Improving the flexural capacity of extrudable foamed concrete with glass-fiber bi-directional grid reinforcement: An experimental study. Compos. Struct. 209, 45-59 (2019). DOI: https://doi.org/10.1016/j.compstruct.2018.10.092
  • [36] D. Falliano, D. De Domenico, G. Ricciardi, E. Gugliandolo, Compressive and flexural strength of fiber-reinforced foamed concrete: Effect of fiber content, curing conditions and dry density. Constr. Build. Mater. 198, 479-493 (2019). DOI: https://doi.org/10.1016/j.conbuildmat.2018.11.197
  • [37] J.F. Castillo-Lara, E.A. Flores-Johnson, A. Valadez-Gonzalez, P.J. Herrera-Franco, J.G. Carrillo, P.I. Gonzalez-Chi, Q.M. Li, Mechanical properties of natural fiber reinforced foamed concrete. Materials 13 (14), 3060 (2020). DOI: https://doi.org/10.3390/ma13143060
  • [38] M.S. Mahzabin, L.J. Hock, M.S. Hossain, L.S. Kang, The influence of addition of treated kenaf fibre in the production and properties of fibre reinforced foamed composite. Constr. Build. Mater. 178, 518-528 (2018). DOI: https://doi.org/10.1016/j.conbuildmat.2018.05.169
  • [39] S.S. Suhaili, M.A. Othuman Mydin, Potential of stalk and spikelets of empty fruit bunch fibres on mechanical properties of lightweight foamed concrete. Int. J. Sci. Technol. Res. 9 (3), 3199-3204 (2020).
  • [40] O. Onuaguluchi, N. Banthia, Plant-based natural fibre reinforced cement composites: A review. Cem. Concr. Compos. 68, 96-108 (2016). DOI: https://doi.org/10.1016/j.cemconcomp.2016.02.014
  • [41] E. Ikponmwosa, C. Fapohunda, O. Kolajo, O. Eyo, Structural behaviour of bamboo-reinforced foamed concrete slab containing polyvinyl wastes (PW) as partial replacement of fine aggregate. J. King Saud Univ. Eng. Sci. 29 (4), 348-355 (2017). DOI: https://doi.org/10.1016/j.jksues.2015.06.005
  • [42] E.K. Nambiar, K. Ramamurthy, Influence of filler type on the properties of foam concrete. Cement Concr. Compos. 28 (5), 475-480 (2006). DOI: https://doi.org/10.1016/j.cemconcomp.2005.12.001
  • [43] A.M. Maglad, M.A.O. Mydin, S.S. Majeed, B.A. Tayeh, S.A. Mostafa, Development of eco-friendly foamed concrete with waste glass sheet powder for mechanical, thermal and durability properties enhancement. J. Build. Eng. 80 (1), 107974 (2023). DOI: https://doi.org/10.1016/j.jobe.2023.107974
  • [44] M. Alyami, M.A.O. Mydin, A.M. Zeyad, S.S. Majeed, B.A. Tayeh, Influence of wastepaper sludge ash as partial cement replacement on the properties of lightweight foamed concrete. J. Build. Eng. 79, 107893 (2023). DOI: https://doi.org/10.1016/j.jobe.2023.107893
  • [45] M.A.O. Mydin, P. Jagadesh, A. Bahrami, A. Dulaimi, Y.O. Ozkilic, M.M.A.B. Abdullah, R.P. Jaya, Use of calcium carbonate nanoparticles in production of nano-engineered foamed concrete. J. Mater. Res. Technol. 26, 4405-4422 (2023). DOI: https://doi.org/10.1016/j.jmrt.2023.08.106
  • [46] M. Maglad, M.A.O. Mydin, S.D. Datta, B.A. Tayeh, Assessing the mechanical, durability, thermal and microstructural properties of sea shell ash based lightweight foamed concrete. Constr. Build. Mater. 402, 133018 (2023). DOI: https://doi.org/10.1016/j.conbuildmat.2023.133018
Uwagi
This research has been funded by the Ministry of Higher Education (MOHE) through the Fundamental Research Grant Scheme (FRGS) (FRGS/1/2022/TK01/USM/02/3)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f6644ff5-5673-4f84-a6c4-ab75cacbfeb4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.