Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, for multiple different chaotic systems with fully unknown parameters, a novel synchronization scheme called ‘modified function projective multi-lag generalized compound synchronization’ is put forward. As an advantage of the new method, not only the addition and subtraction, but also the multiplication of multiple chaotic systems are taken into consideration. This makes the signal hidden channels more abundant and the signal hidden methods more flexible. By virtue of finite-time stability theory and an adaptive control technique, a finite-time adaptive control scheme is established to realize the finite-time synchronization and to properly evaluate the unknown parameters. A detailed theoretical derivation and a specific numerical simulation demonstrate the feasibility and validity of the advanced scheme.
Rocznik
Tom
Strony
613--624
Opis fizyczny
Bibliogr. 49 poz., rys., tab., wykr.
Twórcy
autor
- School of Mathematics and Statistics, Xidian University, Xi’an 710071, China; School of Mathematical Sciences, Henan Institute of Science and Technology, Xinxiang 453003, China
autor
- School of Mathematics and Statistics, Xidian University, Xi’an 710071, China
autor
- School of Mathematical Sciences, Henan Institute of Science and Technology, Xinxiang 453003, China
Bibliografia
- [1] Aghababa, M.P., Khanmohammadi, S. and Alizadeh, G. (2011). Finite-time synchronization of two different chaotic systems with unknown parameters via sliding mode technique, Applied Mathematical Modelling 35(6): 3080–3091.
- [2] Ben Brahim, A., Dhahri, S., Ben Hmida, F. and Sellami, A. (2015). An H∞ sliding mode observer for Takagi–Sugeno nonlinear systems with simultaneous actuator and sensor faults, International Journal of Applied Mathematics and Computer Science 25(3): 547–559, DOI: 10.1515/amcs-2015-0041.
- [3] Bhat, S.P. and Bernstein, D.S. (2000). Finite-time stability of continuous autonomous systems, SIAM Journal on Control and Optimization 38(3): 751–766.
- [4] Boccaletti, S. and Valladares, D. (2000). Characterization of intermittent lag synchronization, Physical Review E 62(5B): 7497.
- [5] Cai, N., Jing, Y. and Zhang, S. (2010). Modified projective synchronization of chaotic systems with disturbances via active sliding mode control, Communications in Nonlinear Science and Numerical Simulation 15(6): 1613–1620.
- [6] Chen, Y., Fei, S. and Li, Y. (2015). Stabilization of neutral time-delay systems with actuator saturation via auxiliary time-delay feedback, Automatica 52(C): 242–247.
- [7] Chen, Y., Wu, X. and Gui, Z. (2010). Global synchronization criteria for a class of third-order non-autonomous chaotic systems via linear state error feedback control, Applied Mathematical Modelling 34(12): 4161–4170.
- [8] Cheng, L., Yang, Y., Li, L. and Sui, X. (2018). Finite-time hybrid projective synchronization of the drive-response complex networks with distributed-delay via adaptive intermittent control, Physica A: Statistical Mechanics and Its Applications 500(15): 273–286.
- [9] Du, H., Zeng, Q. and Lü, N. (2010). A general method for modified function projective lag synchronization in chaotic systems, Physics Letters A 374(13): 1493–1496.
- [10] Du, H., Zeng, Q. and Wang, C. (2008). Function projective synchronization of different chaotic systems with uncertain parameters, Physics Letters A 372(33): 5402–5410.
- [11] Du, H., Zeng, Q. and Wang, C. (2009). Modified function projective synchronization of chaotic system, Chaos Solitons and Fractals 42(4): 2399–2404.
- [12] Fedele, G., D’Alfonso, L., Pin, G. and Parisini, T. (2018). Volterras kernels-based finite-time parameters estimation of the Chua system, Applied Mathematics and Computation 318(1): 121–130.
- [13] Gao, Y., Sun, B. and Lu, G. (2013). Modified function projective lag synchronization of chaotic systems with disturbance estimations, Applied Mathematical Modelling 37(7): 4993–5000.
- [14] Grzybowski, J., Rafikov, M. and Balthazar, J. (2009). Synchronization of the unified chaotic system and application in secure communication, Communications in Nonlinear Science and Numerical Simulation 14(6): 2793–2806.
- [15] Haimo, V. (1986). Finite time controllers, SIAM Journal on Control and Optimization 24(4): 760–770.
- [16] Hramov, A. and Koronovskii, A. (2004). An approach to chaotic synchronization, Chaos: An Interdisciplinary Journal of Nonlinear Science 14(3): 603–610.
- [17] Kaczorek, T. (2016). Reduced-order fractional descriptor observers for a class of fractional descriptor continuous-time nonlinear systems, International Journal of Applied Mathematics and Computer Science 26(2): 277–283, DOI:10.1515/amcs-2016-0019.
- [18] Kim, C.M., Rim, S., Kye, W.H., Ryu, J.W. and Park, Y.J. (2003). Anti-synchronization of chaotic oscillators, Physics Letters A 320(1): 39–46.
- [19] Lee, S., Ji, D., Park, J. and Won, S. (2008). H∞ synchronization of chaotic systems via dynamic feedback approach, Physics Letters A 374(17–18): 1900–1900.
- [20] Li, Q. and Liu, S. (2017). Dual-stage adaptive finite-time modified function projective multi-lag combined synchronization for multiple uncertain chaotic systems, Open Mathematics 15(1): 1035–1047.
- [21] Liu, L., Cao, X., Fu, Z., Song, S. and Xing, H. (2018). Finite-time control of uncertain fractional-order positive impulsive switched systems with mode-dependent average D-well time, Circuits, Systems, and Signal Processing 37(9): 3739–3755, DOI: 10.1007/s00034-018-0752-5.
- [22] Liu, L., Fu, Z., Cai, X. and Song, X. (2013a). Non-fragile sliding mode control of discrete singular systems, Communications in Nonlinear Science and Numerical Simulation 18(3): 735–743.
- [23] Liu, L., Fu, Z. and Song, X. (2013b). Passivity-based sliding mode control for a polytopic stochastic differential inclusion system, ISA Transactions 52(6): 775–780.
- [24] Liu, L., Pu, J., Song, X., Fu, Z. and Wang, X. (2014). Adaptive sliding mode control of uncertain chaotic systems with input nonlinearity, Nonlinear Dynamics 76(4): 1857–1865.
- [25] Liu, L., Song, X. and Li, X. (2012). Adaptive exponential synchronization of chaotic recurrent neural networks with stochastic perturbation, IEEE International Conference on Automation and Logistics, Zhengzhou, China, pp. 332–336.
- [26] Lu, J., Ho, D.W. and Cao, J. (2010). A unified synchronization criterion for impulsive dynamical networks, Automatica 46(7): 1215–1221.
- [27] Luo, R. and Wang, Y. (2012). Finite-time stochastic combination synchronization of three different chaotic systems and its application in secure communication, Chaos 22(2): 023109.
- [28] Luo, R., Wang, Y. and Deng, S. (2011). Combination synchronization of three classic chaotic systems using active backstepping design, Chaos 21(4): 043114.
- [29] Mainieri, R. and Rehacek, J. (1999). Projective synchronization in three-dimensional chaotic systems, Physical Review Letters 82(15): 3042–3045.
- [30] Mu, X. and Chen, Y. (2016). Synchronization of delayed discrete-time neural networks subject to saturated time-delay feedback, Neurocomputing 175(A): 293–299.
- [31] Park, E., Zaks, M. and Kurths, J. (1999). Phase synchronization in the forced Lorenz system, Physics Review E 60(6A): 6627–6638.
- [32] Pecora, L. and Carroll, T. (1990). Synchronization in chaotic systems, Physical Review Letters 06(08): 821–824.
- [33] Rosenblum, M.G., Pikovsky, A.S. and Kurths, J. (1997). From phase to lag synchronization in coupled chaotic oscillators, Physical Review Letters 44(78): 4193–4196.
- [34] Song, Q., Cao, J. and Liu, F. (2010). Synchronization of complex dynamical networks with nonidentical nodes, Physics Letters A 374(4): 544–551.
- [35] Srinivasarengan, K., Ragot, J., Aubrun, C. and Maquin, D. (2018). An adaptive observer design approach for discrete-time nonlinear systems, International Journal of Applied Mathematics and Computer Science 28(1): 55–67, DOI: 10.2478/amcs-2018-0004.
- [36] Sudheer, K.S. and Sabir, M. (2011). Adaptive modified function projective synchronization of multiple time-delayed chaotic Rossler system, Physics Letters A 375(8): 1176–1178.
- [37] Sun, J., Shen, Y. and Cui, G. (2015). Compound synchronization of four chaotic complex systems, Advances in Mathematical Physics 2015(A): 1–11, DOI: 10.1155/2015/921515.
- [38] Sun, J., Shen, Y., Wang, X. and Chen, J. (2014). Finite-time combination-combination synchronization of four different chaotic systems with unknown parameters via sliding mode control, Nonlinear Dynamics 76(1): 383–397.
- [39] Wang, B. and Wen, G. (2007). On the synchronization of a class of chaotic systems based on back-stepping method, Physics Letters A 370(1): 35–39.
- [40] Wang, F. and Liu, C. (2007). Synchronization of unified chaotic system based on passive control, Physica D: Nonlinear Phenomena 225(1): 55–60.
- [41] Wang, H., Han, Z.Z., Xie, Q.Y. and Zhang, W. (2009). Finite-time chaos control via nonsingular terminal sliding mode control, Communications in Nonlinear Science and Numerical Simulation 14(6): 2728–2733.
- [42] Wang, S., Zheng, S., Zhang, B. and Cao, H. (2016). Modified function projective lag synchronization of uncertain complex networks with time-varying coupling strength, Optik-International Journal for Light and Electron Optics 127(11): 4716–4725.
- [43] Wang, X. and Wei, N. (2015). Modified function projective lag synchronization of hyper chaotic complex systems with parameter perturbations and external perturbations, Journal of Vibration and Control 21(16): 3266–3280.
- [44] Wen, G. and Xu, D. (2005). Nonlinear observer control for full-state projective synchronization in chaotic continuous-time systems, Chaos Solitons and Fractals 26(1): 71–77.
- [45] Xia, J., Gao, H., Liu, M., Zhuang, G. and Zhang, B. (2018). Non-fragile finite-time extended dissipative control for a class of uncertain discrete time switched linear systems, Journal of the Franklin Institute 355(6): 3031–3049.
- [46] Xu, Y., Zhou, W., Fang, J., Xie, C. and Tong, D. (2016). Finite-time synchronization of the complex dynamical network with nonderivative and derivative coupling, Neurocomputing 173(1): 1356–1361.
- [47] Yang, S. and Duan, C. (1998). Generalized synchronization in chaotic systems, Chaos Solitons and Fractals 9(10): 1703–1707.
- [48] Yu, H. and Liu, Y. (2003). Chaotic synchronization based on stability criterion of linear systems, Physics Letters A 314(4): 292–298.
- [49] Yu, X. and Man, Z. (2002). Fast terminal sliding-mode control design for nonlinear dynamical systems, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 49(2): 261–264.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f6621586-d28b-4ee1-bcbd-b2068773f4df