PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of cutting process adjustment on crystallographic texture of machined surface layer of titanium alloy

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Integral structural parts of titanium alloy have high material removal rate, high machining difficulty and need multi-step machining to form the final geometry. The crystallographic texture of machined surface layer will affect the surface quality and the mechanical performance of machined parts from the microstructural aspect. Therefore, high requirements for finish machining surface quality and a reasonable high-quality machining surface-oriented process adjustment method need to be explored. In this paper, the surface quality controlling methods of titanium alloy machining are theoretically analyzed, two machining process adjustment methods in terms of multi-step cutting and prestressed cutting are proposed, and the finite element simulation of multi-step cutting and prestressed cutting was carried out. According to the principle of crystallographic texture and the obtained shear strain and strain rate data by finite element simulation, the crystallographic texture of surface layer materials processed by single-step cutting, single-step prestressed cutting, multi-step cutting and prestressed multi-step cutting were simulated by viscoplastic self-consistent (VPSC) texture simulation program. The influence of cutting process adjustment method on the texture polar figures (texture type and texture density) and crystallographic orientation distribution function (ODF) diagram of machined surface was analyzed. Moreover, the experimental comparisons and validations of simulated results were conducted by orthogonal cutting tests and microstructural texture measurements by using electron backscatter diffraction (EBSD) technique.
Rocznik
Strony
art. no. e19, 2023
Opis fizyczny
Bibliogr. 41 poz., rys., tab., wykr.
Twórcy
autor
  • Key Laboratory of High Efficiency and Clean Mechanical Manufacture of MOE, School of Mechanical Engineering, Shandong University, Jinan 250061, People’s Republic of China
  • National Demonstration Center for Experimental Mechanical Engineering Education (Shandong University), Jinan 250061, People’s Republic of China
autor
  • Key Laboratory of High Efficiency and Clean Mechanical Manufacture of MOE, School of Mechanical Engineering, Shandong University, Jinan 250061, People’s Republic of China
  • National Demonstration Center for Experimental Mechanical Engineering Education (Shandong University), Jinan 250061, People’s Republic of China
autor
  • Key Laboratory of High Efficiency and Clean Mechanical Manufacture of MOE, School of Mechanical Engineering, Shandong University, Jinan 250061, People’s Republic of China
  • National Demonstration Center for Experimental Mechanical Engineering Education (Shandong University), Jinan 250061, People’s Republic of China
autor
  • Key Laboratory of High Efficiency and Clean Mechanical Manufacture of MOE, School of Mechanical Engineering, Shandong University, Jinan 250061, People’s Republic of China
  • National Demonstration Center for Experimental Mechanical Engineering Education (Shandong University), Jinan 250061, People’s Republic of China
Bibliografia
  • 1. Li AH, Zhao J, Dong YW, Wang D, Chen XX. Surface integrity of high-speed face milled Ti-6Al-4V alloy with PCD tools. Mach Sci Technol. 2013;17(3):464-82. https://doi.org/10.1080/10910344.2013.806180.
  • 2. Brown M, Pieris D, Wright D, Crawforth P, M’Saoubi R, McGourlay J, Mantle A, Patel R, Smith RJ, Ghadbeigi H. Non-destructive detection of machining-induced white layers through grain size and crystallographic texture-sensitive methods. Mater Des. 2021;200: 109472. https://doi.org/10.1016/j.matdes.2021.109472.
  • 3. Zhang R, Li A, Song X. Surface quality adjustment and controlling mechanism of machined surface layer in two-step milling of titanium alloy. Int J Adv Manuf Technol. 2022;119(3-4):2691-707. https://doi.org/10.1007/s00170-021-08359-7.
  • 4. Sasahara H, Obikawa T, Shirakashi T. FEM analysis of cutting sequence effect on mechanical characteristics in machined layer. J Mater Process Technol. 1996;62(2):228-53. https://doi.org/10.1016/S0924-0136(96)02451-X.
  • 5. Liu CR, Guo YB. Finite element analysis of the effect of sequential cuts and tool-chip friction on residual stresses in a machined layer. Int J Mech Sci. 2000;42(6):1069-86. https://doi.org/10.1016/S0020-7403(99)00042-9.
  • 6. Wang M. Principle and technology of anti-fatigue manufacturing. Nanjing: Phoenix science press; 1999.
  • 7. Hu HN, Zhou ZH, Chen CZ. A theoretical analysis of the residual stress in prestressed machining. J South China Univ Technol (Nat Sci Ed). 1994;22(2):1-10 (http://www.cqvip.com/QK/94312X/19942/1378848.html).
  • 8. Xu JJ, Geng GS, Li GH, Feng JJ. Finite element simulation of residual stress in titanium alloy TC4 surface machined by prestress cutting. Mater Mech Eng. 2015;39(06):105-10.
  • 9. Li A, Zang J, Zhao J. Effect of cutting parameters and tool rake angle on the chip formation and adiabatic shear characteristics in machining Ti-6Al-4V Titanium alloy. Int J Adv Manuf Technol. 2020;107(7-8):3077-91. https://doi.org/10.1007/s00170-020-05145-9.
  • 10. Aassif EH, Salvatore F, Hamdi H. Multistep hybrid approach applied to material removal operation using cutting tool. Congres francais de mecanique. AFM, Maison de la Mecanique, 39/41 rue Louis Blanc, 92400 Courbevoie, France (FR); 2013. http://hdl.handle.net/2042/52263.
  • 11. Peng R, Liu K, Tang X, Liao M, Hu Y. Effect of prestress on cutting of nickel-based superalloy GH4169. Int J Adv Manuf Technol. 2019;100(1-4):813-25. https://doi.org/10.1007/s00170-018-2746-7.
  • 12. Peng R, Zhao L, Tong J, Fu X, Chen M. Application of prestressed cutting to aviation alloy: The effect on residual stress and surface roughness. J Manuf Processes. 2021;62:501-12. https://doi.org/10.1016/j.jmapro.2020.12.021.
  • 13. Huang Y. A user-material subroutine incorporating single crystal plasticity in the ABAQUS finite element program. Massachusetts: Harvard University; 1991. https://smartech.gatech.edu/handle/1853/53103.
  • 14. Zhang XM, Li SY. Research of textures in metallic materials and its development. Bulletin of National Natural Science Foundation of China, 1995; (03): 30-34. http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZKJJ199503004.htm.
  • 15. Fergani O. Materials-affected manufacturing in precision machining. Atlanta: Georgia Institute of Technology; 2014. (http://hdl.handle.net/1853/53103).
  • 16. Wang QQ, Liu ZQ. Investigation the effect of strain history on crystallographic texture evolution based on the perspective of macro deformation for high speed machining Ti-6Al-4V. Mater Charact. 2017;131:331-8. https://doi.org/10.1016/j.match ar.2017.07.017.
  • 17. Li A, Pang J, Zhao J, Zang J, Wang F. FEM-simulation of machining induced surface plastic deformation and microstructural texture evolution of Ti-6Al-4V alloy. Int J Mech Sci. 2017;123:214-23. https://doi.org/10.1016/j.ijmecsci.2017.02.014.
  • 18. Li A, Pang J, Zhao J. Crystallographic texture evolution and tribological behavior of machined surface layer in orthogonal cutting of Ti-6Al-4V alloy. J Mater Res Technol. 2019;8(5):4598-611. https://doi.org/10.1016/j.jmrt.2019.08.004.
  • 19. Zhou X, He L, Zhou T, Jiang H, Xu J, Tian P, Zou Z, Du F. Multiscale research of microstructure evolution during turning Ti-6Al-4V alloy based on FE and CA. J Alloy Compd. 2022;922: 166202. https://doi.org/10.1016/j.jallcom.2022.166202.
  • 20. Chen RY. Metal cutting principle. Beijing: Machinery Industry Press; 1985. p. 33-7.
  • 21. Liang XL, Liu ZQ. Experimental investigations on effects of tool flank wear on surface integrity during orthogonal dry cutting of Ti-6Al-4V. Int J Adv Manuf Technol. 2017;93(5-8):1617-26. https://doi.org/10.1007/s00170-017-0654-x.
  • 22. Wu DW, Matsumoto Y. The effect of hardness on residual stresses in orthogonal machining of AISI 4340 steel. J Eng Ind Trans ASME. 1990;112(3):245-52. https://doi.org/10.1115/1.2899582.
  • 23. Ai X. High speed machining technology. Beijing: National Defense Industry Press; 2003.
  • 24. Tan YX, Hu ZZ. Material research methods. Beijing: Machinery Industry Press; 2004.
  • 25. Lu YJ. Researches on residual stress and work hardening of micro milling nickel-base superalloy Inconel 718. Dalian: Dissertation of Master’s degree Dalian University of Technology; 2016.
  • 26. Qin MY. Residual stress control research on machined surface for pre-stress cutting. Guangzhou: Ph.D. Dissertation, South China University of Technology; 2012.
  • 27. Johnson GR, Cook WH. A constitutive model and data for metals subjected to large strains high strain rates and high temperature. In: Proceedings of 7th Int Symposium Ballistics, Hague, Netherlands 1983; 21: 541-547. https://ci.nii.ac.jp/naid/20000193157/.
  • 28. Lv M, Li A, Ge D, Zhang R. Step-dependent grain refinement and micro-harness evolution during chip formation process in orthogonal cutting of titanium alloy Ti-6Al-4V. Int J Adv Manuf Technol. 2022;119(7-8):4219-36. https://doi.org/10.1007/s00170-021-08511-3.
  • 29. Lee WS, Lin CF. High-temperature deformation behavior of Ti6Al4V alloy evaluated by high strain-rate compression tests. J Mater Process Technol. 1998;75(1):127-36. https://doi.org/10.1016/S0924-0136(97)00302-6.
  • 30. Sun J, Guo YB. Material flow stress and failure in multiscale machining titanium alloy Ti-6Al-4V. Int J Adv Manuf Technol. 2009;41(7-8):651-9. https://doi.org/10.1007/s00170-008-1521-6.
  • 31. Mao WM, Yang P, Chen L. Principle and detection technology of Material texture analysis. Beijing: Metallurgical Industry Press; 2008.
  • 32. Suwas S, Ray RK. Crystallographic texture of materials. London: Springer; 2014. p. 23-5.
  • 33. Bridier F, Villechaise P, Mendez J. Analysis of the different slip systems activated by tension in a α/β titanium alloy in relation with local crystallographic orientation. Acta Mater. 2005;53(3):555-67. https://doi.org/10.1016/j.actamat.2004.09.040.
  • 34. Asaro RJ, Rice JR. Strain localization in ductile single crystals. J Mech Physics Solids. 1977;25(5):309-38. https://doi.org/10.1016/0022-5096(77)90001-1.
  • 35. Peirce D, Asaro RJ, Needleman A. Material rate dependence and localized deformation in crystalline solids. Acta Metallur. 1983;31(12):1951-76. https://doi.org/10.1016/0001-6160(83)90014-7.
  • 36. Agnew SR, Yoo MH, Tome CN. Application of texture simulation to understanding mechanical behavior of Mg and solid solution alloys containing Li or Y. Acta Mater. 2001;49(20):4277-89. https://doi.org/10.1016/S1359-6454(01)00297-X.
  • 37. Bridier F, McDowell DL, Villechaise P, Villechaise P, Mendez J. Crystal plasticity modeling of slip activity in Ti-6Al-4V under high cycle fatigue loading. Int J Plasticity. 2009;25(6):1066-82. https://doi.org/10.1016/j.ijplas.2008.08.004.
  • 38. Suwas S, Ray RK. Crystallographic texture of materials. London: Springer; 2014. p. 12-8.
  • 39. Beausir B, Toth LS, Neale KW. Ideal orientations and persistence characteristics of hexagonal close packed crystals in simple shear. Acta Mater. 2007;55(8):2695-705. https://doi.org/10.1016/j.actamat.2006.12.021.
  • 40. Liang X, Liu Z, Wang Q, Wang B, Ren X. Tool wear-induced microstructure evolution in localized deformation layer of machined Ti-6Al-4V. J Mater Sci. 2020;55(8):3636-51. https://doi.org/10.1007/s10853-019-04214-z.
  • 41. Song X, Li A, Lv M, Lv H, Zhao J. Finite element simulation study on pre-stress multi-step cutting of Ti-6Al-4V titanium alloy. Int J Adv Manuf Technol. 2019;104(5-8):2761-71. https://doi.org/10.1007/s00170-019-04122-1.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f65a7329-00ca-42b8-be7c-8ae79f414a2a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.