PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Extended Definitions of Spectrum of a Sampled Signal

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
It is shown that a number of equivalent choices for the calculation of the spectrum of a sampled signal are possible. Two such choices are presented in this paper. It is illustrated that the proposed calculations are more physically relevant than the definition currently in use.
Twórcy
  • Department of Marine Telecommunications, Faculty of Electrical Engineering, Gdynia Maritime University, Gdynia, Poland
Bibliografia
  • [1] A. Borys, “Spectrum aliasing does not occur in case of ideal signal sampling,” Intl Journal of Electronics and Telecommunications, vol. 67, no. 1, pp. 71-77, 2021.
  • [2] J. H. McClellan, R. Schafer, M. Yoder, DSP First. London, England: Pearson, 2015.
  • [3] M. Vetterli, J. Kovacevic, V. K. Goyal, Foundations of Signal Processing. Cambridge, England: Cambridge University Press, 2014.
  • [4] A. V. Oppenheim, R. W. Schafer, J. R. Buck, Discrete-Time Signal Processing. New Jersey, USA: Prentice Hall, 1998.
  • [5] R. J. Marks, Introduction to Shannon Sampling and Interpolation Theory. New York, USA: Springer-Verlag, 1991.
  • [6] R. N. Bracewell, The Fourier Transform and Its Applications. New York, USA: McGraw-Hill , 2000.
  • [7] V. K. Ingle, J. G. Proakis, Digital Signal Processing Using Matlab. Stamford, CT, USA: Cengage Learning, 2012.
  • [8] P. Prandoni, M. Vetterli, Signal Processing for Communications. Lausanne, Switzerland: EPFL Press, 2008.
  • [9] N.T. Thao, M. Vetterli, “Deterministic analysis of oversampled A/D conversion and decoding improvement based on consistent estimates”, IEEE Transactions on Signal Processing, vol. 42, no. 3, pp. 519-531, 1994.
  • [10] K. Adam, A. Scholefield, M. Vetterli, “Encoding and Decoding Mixed Bandlimited Signals Using Spiking Integrate-and-Fire Neurons”, 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 9264-9268, May 2020.
  • [11] R. Alexandru, P. L. Dragotti, “Reconstructing classes of non-bandlimited signals from time encoded information”, IEEE Transactions on Signal Processing, vol. 68, pp. 747-763, 2020.
  • [12] A. Lazar, L. T. Toth, “Perfect recovery and sensitivity analysis of time encoded bandlimited signals,” IEEE Transactions on Circuits and Systems – I: Regular Papers, vol. 51, no. 10, pp. 2060-2073, 2004.
  • [13] J. A. Urigueen, T. Blu, P. L. Dragotti, “FRI Sampling with arbitrary kernels”, IEEE Transactions on Signal Processing, vol. 61, pp. 5310-5323, 2013.
  • [14] M. Vetterli, P. Marziliano, T. Blu, “Sampling signals with finite rate of innovation”, IEEE Transactions on Signal Processing, vol. 50, no. 6, pp. 1417-1428, 2002.
  • [15] P. L. Dragotti, M. Vetterli, and T. Blu, “Sampling moments and reconstructing signals of finite rate of innovation: Shannon meets strang-fix,” IEEE Transactions on Signal Processing, vol. 55, no. 5, pp. 1741-1757, 2007.
  • [16] R. Tur, Y. C. Eldar, Z. Friedman, “Innovation rate sampling of pulse streams with application to ultrasound imaging,” IEEE Transactions on Signal Processing, vol. 59, no. 4, pp. 1827-1842, 2011.
  • [17] M. Unser, “Sampling – 50 years after Shannon,” Proceedings of the IEEE, vol. 88, no. 4, pp. 569-587, 2000.
  • [18] G. Ortiz-Jimenez, M. Coutino, S. P. Chepuri, G. Leus, “Sparse sampling for inverse problems with tensors”, IEEE Transactions on Signal Processing, vol. 67, no. 12, pp. 3272-3286, 2019.
  • [19] S. P. Chepuri, G. Leus, “Graph sampling for covariance estimation”, IEEE Transactions on Signal and Information Processing over Networks, vol. 3, no. 3, pp. 451-466, 2017.
  • [20] M. R. D. Rodrigues, Y. C., Eldar, Information-Theoretic Methods in Data Science. Cambridge, England: Cambridge University Press, 2021.
  • [21] M. R. D. Rodrigues, H. Bölcskei, S. Draper, Y. Eldar, V. Tan, “Introduction to the issue on information-theoretic methods in data acquisition, analysis, and processing”, IEEE Journal on Selected Topics in Signal Processing, vol. 66, no. 9, pp. 2314-2329, 2018.
  • [22] G. Matz, H. Bölcskei, and F. Hlawatsch, “Time-frequency foundations of communications”, IEEE Signal Processing Magazine, vol. 30, no. 6, pp. 87-96, 2013.
  • [23] Y. Eldar, H. Bölcskei, “Geometrically uniform frames”, IEEE Transactions on Information Theory, vol. 49, no. 4, pp. 993-1006, 2003.
  • [24] Y. Kopsinis, K. Slavakis, S. Theodoridis “On line sparse system identification and signal reconstruction using projections onto weighted 11 balls”, IEEE Transactions on Signal Processing, vol. 59, no. 3, pp. 936-952, 2011.
  • [25] A. Morgado, R. del Río, J.M. de la Rosa, “High-efficiency cascade sigma-delta modulators for the next generation software-defined-radio mobile systems,” IEEE Trans. on Instrumentation and Measurement, vol. 61, pp. 2860-2869, 2012.
  • [26] L. Zhao, Z. Chen, Y. Yang, L. Zou, Z. J. Wang, “ICFS clustering with multiple representatives for large data”, IEEE Transactions on Neural Networks and Learning Systems, vol. 30, no. 3, pp. 728-738, 2019.
  • [27] V. Poor, An Introduction to Signal Detection and Estimation. Berlin, Germany: Springer-Verlag, 1994.
  • [28] T. Kailath, V. Poor, “Detection of stochastic processes”, IEEE Transactions on Information Theory, vol. 44, no. 6, pp. 2230-2231, 1998.
  • [29] A. Yeredor, “Blind channel estimation using first and second derivatives of the characteristic function”, IEEE Signal Processing Letters, vol. 9, no. 3 pp. 100-103, 2002.
  • [30] J.J. Clark, M.R. Palmer, P.D. Lawrence, “A transformation method for the reconstruction of functions from non-uniformly spaced samples,” IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 33, pp. 1151-1165, 1985.
  • [31] L. Heyoung, Z.Z. Bien, “A variable bandwidth filter for estimation of instantaneous frequency and reconstruction of signals with time-varying spectral content,” IEEE Transactions on Signal Processing, vol. 59, pp. 2052-2071, 2011.
  • [32] E. Lee, D. Messerschmitt, Digital Communication. Boston, USA: Kluwer, 1994.
  • [33] S. Mallat, A Wavelet Tour of Signal Processing. San Diego, USA: Academic, 1998.
  • [34] P. Stoica, R. Moses, Introduction to Spectral Analysis. Englewood Cliffs, USA: Prentice-Hall, 2000.
  • [35] H. P. E. Stern, S.A. Mahmoud, Communication Systems: Analysis and Design. Upper Saddle River, USA: Prentice-Hall, 2004.
  • [36] M. Vetterli, J. Kovacevic, Wavelets and Subband Coding. Englewood Cliffs, USA: Prentice-Hall, 1995.
  • [37] E. J. Candè, M. B. Wakin, “An introduction to compressive sampling”, IEEE Signal Processing Magazine, vol. 25, no. 2, pp. 21-30, 2008.
  • [38] A. Zayed, Advances in Shannon’s Sampling Theory. Boca Raton, USA: CRC Press, 1993.
  • [39] R. H. Walden, “Analog-to-digital converter survey and analysis,” IEEE Journal on Selected Areas in Communications, vol. 17, no. 4, pp. 539–550, 1999.
  • [40] P. P. Vaidyanathan, “Generalizations of the sampling theorem: seven decades after Nyquist,” IEEE Trans. Circuits Systems I: Fundamental Theory and Applications, vol. 48, no. 9, pp. 1094–1109, 2001.
  • [41] H. J. Landau, “Sampling, data transmission, and the Nyquist rate”, Proceedings of the IEEE, vol. 55, no. 10, pp. 1701-1706, 1967.
  • [42] R.G. Lyons, Understanding Digital Signal Processing. Reading, USA: Addison-Wesley, 1997.
  • [43] A. J. Jerri, “The Shannon sampling theorem - its various extensions and applications: a tutorial review,” Proceedings of the IEEE, vol. 65, no. 11, pp. 1565–1596, 1977.
  • [44] Y. C. Eldar, T. Michaeli, “Beyond bandlimited sampling,” IEEE Signal Processing Magazine, vol. 26, no. 3, pp. 48–68, 2009.
  • [45] A. Papoulis, “Error analysis in sampling theory,” Proceedings of the IEEE, vol. 54, no. 7, pp. 947–955, 1966.
  • [46] A. Papoulis, “Generalized sampling expansion,” IEEE Transactions on Circuits and Systems, vol. 24, no. 11, pp. 652–654, 1977.
  • [47] R. G. Vaughan, N. L. Scott, D. R. White, “The theory of bandpass sampling,” IEEE Transactions on Signal Processing, vol. 39, no. 9, pp. 1973–1984, 1991.
  • [48] Y. M. Lu, M. N. Do, “A theory for sampling signals from a union of subspaces,” IEEE Transactions on Signal Processing, vol. 56, no. 6, pp. 2334–2345, 2008.
  • [49] C. Herley, P. W. Wong, “Minimum rate sampling and reconstruction of signals with arbitrary frequency support,” IEEE Transactions on Information Theory, vol. 45, no. 5, pp. 1555–1564, 1999.
  • [50] L. Schwartz, Théorie des Distributions. Paris, France: Hermann, 1950-1951.
  • [51] A. Borys, “Spectrum aliasing does occur only in case of non-ideal signal sampling”, Intl Journal of Electronics and Telecommunications, vol. 67, no. 1, pp. 79-85, 2021.
  • [52] S. Boyd, L. Chua, “Fading memory and the problem of approximating nonlinear operators with Volterra series,” IEEE Transactions on Circuits and Systems, vol. 32, no. 11, pp. 1150-1161, 1985.
  • [53] L. V. Kantorovich, G. P. Akilov, Functional Analysis. Oxford, England: Pergamon Press, 1982.
  • [54] I. W. Sandberg, “Linear maps and impulse responses,” IEEE Transactions on Circuits and Systems, vol. 35, no. 2, pp. 201-206, 1988.
  • [55] I. W. Sandberg, “Causality and the impulse response scandal,” IEEE Transactions on Circuits and Systems–I: Fundamental Theory and Applications, vol. 50, no. 6, pp. 810-813, 2003.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f656bce3-55f2-4300-990f-7d08285fa5bf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.