Control and Cybernetics
vol. 41 (2012) No. 4

A framework for cost based optimization of hybrid CPU/GPU
query plans in database systenid

by
Sebastian Brel3, Ingolf Geist, Eike Schallehn, Maik Mory andGunter Saake

Otto-von-Guericke University Magdeburg, Universitasdpl2, D-39106 Magdeburg
{bress,geist,eike,maik.mory,saake}@iti.cs.uni-mdugdg.de

Abstract: Current database research identified the use of computa-
tional power of GPUs as a way to increase the performancetabdae
systems. As GPU algorithms are not necessarily faster thein CPU
counterparts, it is important to use the GPU only if it is ferial for query
processing. In a general database context, only few rds@aojects ad-
dress hybrid query processing, i.e., using a mix of CPU- aRtJ®ased
processing to achieve optimal performance. In this paperextend our
CPU/GPU scheduling framework to support hybrid query pseigy in
database systems. We point out fundamental problems amdsran
algorithm to create a hybrid query plan for a query using alreslul-
ing framework. Additionally, we provide cost metrics, aoating for the
possible overlapping of data transfers and computatiomerGPU. Fur-
thermore, we present algorithms to create hybrid queryspfanquery
sequences and query trees.

1. Introduction

Graphics Processing Units (GPUSs) are specialized procedssigned to support gra-
phical applications. GPUs have advanced capabilities kHlighprocessing and have
more computing power than CPUs nowadays. Using GPUs to sypegeheric applica-
tions is called General Purpose Computation on GraphiaseBsing Units (GPGPU).
In particular, parallelizable applications benefit fronmgmutations on the GPU (Sanders
& Kandrot, 2010).

Currentresearch focuses on the acceleration of databsisgreyby using the GPU
as co-processor (Bakkam & Skadron, 2010; He et al., 20089;2Bibk, 2012; Pirk,
Manegold & Kersten, 2011; Walkowiak et al., 2010) GPUs ailezatl for accelerating
query processing like relational operations (Bakkam & $&ad2010; Diamos et al.,
2012; Govindaraju et al., 2006; He et al., 2006, 2008; He & X0d.1; Kaldewey et
al., 2012; Pirk, 2012; Pirk, Manegold & Kersten, 2011; Pitlak, 2012), XML path
filtering (Moussalli et al., 2011), online aggregation (kaet al., 2010), compression

*This paper is an extended version of previous work, BreRalgtim & Geist (2012).
TSubmitted: October 2012; Accepted: November 2012.

716 S. BRER, I. GEIST, E. SCHALLEHN, M. MORY AND G. SAAKE

(Andrzejewski & Wrembel, 2010; Fang, He & Lao, 2010) and sc@eier, Kilias &
Sattler, 2012), as well as query optimization, e.g., GPUWbaglectivity estimation
(Augustyn & Zederowski, 2012; Heimel & Markl, 2012).

However, the data transfer between CPU and GPU memory intestha large over-
head leading to a better performance of CPU algorithms fatively small data sets
(Gregg & Hazelwood, 2011). Therefore, typical plans for tatlase query consists of
a combination of GPU and CPU algorithms. We call such a quieny ghybrid query

We have to solve many problems to find a hybrid query plan thawa for an ef-
ficient usage of the GPU as co-processor during databasg pruressing. Therefore,
we need a hybrid query optimizer (Heimel, 2011) to constaugbod hybrid query
plan. The optimizer uses a cost model, which includes GPUC#Id costs. Schedul-
ing operations to GPU or CPU increases the search space tgtianizer. Hence, we
have to reduce the search space by using two-step appraaobiber heuristics.

In previous work, we presented a self-tuning decision modéich distributes
database operations response time minimal among CPU andp&ddssing units
(Brel3, Schallehn & Geist, 2012). The model is a black box @@ that computes
estimated execution times for algorithms using statikticethods and observed ex-
ecution times. So far, we only considered single operatidnghis paper, we will
present an extension how a hybrid query plan with low respainse is constructed
from a logical query plan using the scheduling framework.

This paper is an extended version of prior work (Brel3, Sehall& Geist, 2012).
It summarizes our decision model (Brel3et al., 2012; Brelfhaviumad & Schallehn,
2012) and our cost estimation approach for hybrid querygfaneffective GPU co-
processing in relational DBMS (Bref3, Schallehn & Geist, 20XCurrent GPUs sup-
port concurrent processing and data transfer, which camceethe overall execution
time (AMD, 2011; NVIDIA, 2012). Therefore, we contribute @m cost metric for
the computation of query response time assuming concupreaessing of database
operations and data transfer on the GPU are possible. Fomtine, we extend our op-
timization algorithms from query sequences (query plan sscaience of operations)
to query trees (query plan as operator tree).

The remainder of the paper is structured as follows. Firstpnesent the neces-
sary background in Section 2.1. In Section 2.2, we discusk Ipsoblems that occur
during the processing and optimization of hybrid querie® ifroduce our notation
in Section 3. We give a short overview of the decision mod@&éuwtion 4 and present
an approach for the construction of sequential hybrid qyéems in Section 5. Af-
terwards, we present our extended cost metrics and algwgithat consider possible
concurrency of data transfer and computation on GPU sides@ti® 6 and utilize
them in a new heuristic, which we describe in Section 7. IrtiSe@, we generalize
our concepts from query sequences to query trees. The pagesavith a discussion
of related work in Section 9, a discussion of future reseateps in Section 10, and a
conclusion in Section 11.

Cost based optimization of hybrid CPU/GPU query plans 717

grouping groupingcru |
copy(GPU-CPU) |

TlGpPu

n
‘ -+ | Pipelining on GPUs?
> Pleru l
/ \ / \ _ |= Concurrent Kemel Invocation?
—_— -
p - —

o OGPy acpu -~ |

| |copy(CPU—»GPU)‘_...l.c.zf{).\{(iF.’U—v%}"E) |
T T2 T L -“}=.. Concurrent Copying?
logical query plan hybrid query plan | problems

Figure 1. Example: hybrid query plan and problems of hybtidrg processing

2. Preliminaries

In this section, we provide a brief overview over graphiosgassing units and chal-
lenges for hybrid query processing.

2.1. Graphics Processing Units

Graphics Processing Units (GPUSs) are specialized prorsedssigned to support graph-
ical applications. In contrast to the CPU, the GPU is optédifor throughput, which
is achieved by massively parallel execution using large mensof threads. Further-
more, the GPU is optimized for numerical computation, buttad flow statements
brake the performance of a GPU algorithm. Hence, not alliegipbns benefit from
GPU (Sanders & Kandrot, 2010).

A GPU can only process data that resides in the GPU memorycdjaata has
to be transferred from CPU main memory to the GPU memory kgfoocessing on
the GPU. After the GPU processed the data, the result hastram&ferred back into
the CPU memory (NVIDIA, 2012). The copy operations introelaa overhead, which
can lead to a higher total execution time of a GPU algorithmpgared to its CPU
counterpart, even if the execution on the GPU is faster thrathe CPU (Gregg &
Hazelwood, 2011).

2.2. Challenges for hybrid query processing

The main problem of hybrid query processing is to use the GRIYibit is beneficial
for the performance of a query. The physical optimizatioocess in database query
processing should be revised to enable an effective usatiee @&PU to increase the
performance of database systems. It is difficult to gernezaluery processing from
pure CPU based processing to a hybrid CPU/GPU solution. ©ssilfle approach
estimates the execution times of all algorithms for an dp@rachoosing for each
operation in a query the algorithm with the lowest expectesis

718 S. BRER, I. GEIST, E. SCHALLEHN, M. MORY AND G. SAAKE

If a GPU algorithm is selected, then additional commundaratiosts will be in-
curred depending on the data storage location (Gregg & Manel, 2011). We discuss
two common approaches.

First, is cost based optimization by pruning the optim@matpace and comparing
the costs of candidate query plans. Therefore, we need &becaeset of hybrid query
plan candidates and then choose the plan with lowest casteedp the overhead low,
we have to reduce the optimization space while keeping miogcandidates. Hence,
we need a cost model that can compute the cost of a hybrid gleeryn consideration
of data storage location and possibly parallel data traresid data processing. We
discuss our cost metrics in Section 6 and discuss a cost lbasietization algorithm
for query sequences in Section 7.

Second is a greedy strategy which computes exactly onedghbery plan. Con-
sidering the growth of the optimization space, the overtedfaa cost based approach
is likely to be high. Hence, we present a greedy approach aticde5 for query se-
guences and in Section 8 for query trees.

The greedy strategy introduces lower overhead, whereaogtdased approach is
likely to find a query plan with lower cost. Fig. 1 illustratesw a hybrid query plan is
created from a logical query plan. Note the necessary copsatipns, if the optimizer
decides to change the processing device (CPU/GPU). Weifigléwe problems:
Pipelining challenge Modern GPUs can enqueue kernels and concurrently process

them, but the inter-kernel communication is undefined (NMi[2012). Hence,
a regular pipelining between two GPU algorithms is not guesiHowever, it is
possible to integrate two operations into one kernel. Is thaise, several kernels
are combined and compiled together at run-time, if OpenClsisd (Heimel,
2011).

Execution time prediction challenge Database operations can be executed in paral-
lel, e.g., in Fig. 1, where two selections can be processeduoently. The
concurrent processing of kernels is possible for currett SENVIDIA, 2012),
but it is hard to predict the influence on execution times.

Copy serialization challenge Concurrent copy operations in the same direction are
not allowed (NVIDIA, 2012). As Fig. 1 illustrates, concuntedata transfer oc-
cursin query plans. Hence, copy operations have to beigzedabnd the follow-
ing selections have to be serialized as well. A possible@yr is to combine
the two data streams in one copy operation and reorganizgatiaein the GPU
memory. In this way, the PCle Bus is better utilized.

Critical query challenge Since the number of concurrent kernel executions (16 by
current NVIDIA GPUs, NVIDIA, 2012) and the PCle Bus bandwvhdtre lim-
ited, not every query benefits from the GPU. Thus, a heuiisti®eded, which
chooses "critical queries” that, first, benefit from the GPd4ge and, second,
have a certain degree of "importance”, because some querase higher per-
formance than others.

Optimization impact challenge A further problem is the estimation how the execu-
tion of one query influences the performance of another byduery. We do not
consider this problem here and address it in future work.

Cost based optimization of hybrid CPU/GPU query plans 719

3. Notation

Let O be a database operation andA€ = {A1, .., Am} be an algorithm pool for oper-
ationO, where each algorith; in the algorithm pool is executable either on the CPU
or the GPU. The model assumes that the performance of arithlgatepends on the
input data seD, which abstracts the features of the real data set. This sreedata set
contains all statistical information of the representesl cata set. Examples are the
datasize, the data distribution, or the selectivity, if esion operation is performed
on the data. Note that for the selection, the selectivitytbdse estimated according
to the operations parameters. Examples of selectivitynesibn can be found in Au-
gustyn & Zedrowski (2012), Getoor, Taskar & Koller (2001 kibhel & Markl (2012).
Let Test(A, D) be the estimated anighs (A, D) be the measured execution time of algo-
rithm A for a data seD. Let MPLa be a measurement pair list containing all current
measurement pair®(T.eq (A, D)) of algorithmA.

A data setD is partitioned inn partsP, where the parts are disjoif@(P; = 0
with i # j) and completel = PLUP,U---UPRy). The parts have to be disjoint, because
otherwise the same data has to be processed more than onedapping of parts
also leads to wrong results. The partitioning has to be cetepbecause otherwise it
cannot be guaranteed that the complete datB s&processed. Note that the definition
allows that a data sdé? be a partP of itself (P =D AP C D). The times to copy a
partR completely from the CPU main memory to the GPU memory or viersa are
denotedTcpy(P) andTepyn(R), respectively. The estimated time an algoritAmeeds
to process a paR, is Tecomp(P,A). The result of an operatiod for an input par® is
denoted a®esuiti = O(R). Let NG(R) (not in GPU RAM) be a function that returns
1if and only if a part is not stored in the GPU RAM. LIeR(Pesur;) (final result) be
a function that returns 1 if and only if the resulting pBeks,t; is a final result.

We now introduce query sequences and query trees. A logiealygsequence
QSog = 0102--- Oy is a sequence of operations to be executed. TQ&hpyriq is a
hybrid sequence query, if each operationQ&oq is replaced with an algorithm.
Each algorithm uses either the CPU or the GPU. A logical qtregQTog is the result
of a logical query optimization using a traditional databaptimizer. A hybrid query
treeQThybrid iS constructed fron®T g by assigning to each node@iljog an algorithm.

In the case of GPU algorithms, necessary copy operatiorisgeged in the query tree.
Table 1 summarizes the notation.

4. Decision model

In this section, we provide a brief overview of our decisioodal, which we introduced
in previous work (BreRRet al., 2012; Brel3, Mohammad & Sclhal)012).

4.1. Overview

Every year, new features are introduced in GPUs. Hence,cibrhes increasingly
complex to create analytical cost models to estimate theutiom time of a GPU al-

720 S. BRER, I. GEIST, E. SCHALLEHN, M. MORY AND G. SAAKE

Table 1. Notation used

| Symbol | Description

D Data set

A Algorithm

(0] Operation

ARy Algorithm pool forO

Test(A,D) Estimated execution time & for D

Treal(A,D) Measured execution time @ffor D

R Parti of data seD

Pesutti = O(P) | Result part

NG(R) Function, returns true if and only if
R is stored in GPU RAM

FR(Pesulti) Function, returns true if and only if
Presulti is not processed by the GPU anymare

QSog Logical query sequence

QSybrid Hybrid query sequence

QTiog Logical query tree

QThybrid Hybrid query tree

gorithm, which was done by, e.g., Baghsorkhi et al. (201@aHal. (2009), Hong
& Kim (2009), Kothapalli et al. (2009), Schaa & Kaeli (2009)chZhang & Owens
(2011).

Furthermore, a GPU algorithm is not necessarily faster itsa@PU counterpart,
mainly due to the overhead of data transfers (Gregg & Hazedyw®011). To decide on
the algorithm with lowest execution time, we introduced & &aing decision model
(BreRet al., 2012; Brel3, Mohammad & Schallehn, 2012) androbsd significant per-
formance improvements depending on the workload. Sincel¢leésion model is a
central component of our framework, we will provide a briefrsnary.

Our model uses a learning based approach, to counter théepralf increasing
complexity for analytical cost models. The basic idea islieayve the execution be-
havior of algorithms and deduce estimated execution timms past measured execu-
tion times. Hence, an algorithm is the central componenbstraction. The model
learns the characteristic execution time curve of an dlgarfor a specific data sé&.

Let O be an operation anliRy = {Aq,..,An} an algorithm pool, which contains all
available algorithms to execu@® Note that each algorithm uses either the CPU or the
GPU, but not both. He et al. (2009) discovered that no sigmitiperformance gain can
be achieved by processing the same operation on both piogessts by dividing the
operation into two parts, where one part is processed on ¢ &hd the other on the
GPU. By choosing an algorithm that uses a certain processiitgthe corresponding
operation is processed by the CPU or the GPU.

Be Test(D, A) the estimated anf@le4 (D, A) the measured execution time of an algo-
rithm that processes a data BetA measurement paMP = (D, Teq(D,A)) is a tuple

Cost based optimization of hybrid CPU/GPU query plans 721

operation O dataset D optimization criterion
A, ¢ Test(ALD),
A2 ----- Test(AZrD) -----
algorithm pool | A, estimation component | Test(A,,D) —
> [MPLy] --. [MPLs] - [MPLA] —P' decision component
MP:(DrTreal(Ai)) X
1

Figure 2. Overview of the decision model

of a data seb andTe4(D,A) the measured execution time of an algorithm

4.2. Architecture

An incoming operatior® is passed to an algorithm pool which passes all available al-
gorithms to proces® to an estimation component. The estimation component feas th
data seD that is to process as additional input parameter and deestmated exe-
cution times for each available algorithm for the specifiathdseD. These estimated
execution times are then passed to a decision componewhwatides on the optimal
algorithm by using a user specified optimization criter@®@. Note that the execution
time Trea(D,A)) of the selected algorithr; is measured and is inserted in the mea-
surement pair list of; together with the features of the data BetThe feedback loop
enables our model to refine future estimations by colleatiegsurement pairs. Fig. 2
summarizes the architecture of our model.

4.3. Estimation component

To enable the estimation component to compute estimatedit@n times without us-
ing analytical cost models, we have to specify three pararador each algorithm:
(1) a statistical method, (2) an approximation functiaD), which is dictated by the
statistical method, and (3) a measurement paiMiBLa, which contains recent obser-
vations of the algorithms execution. Our model updates ppeaximation function of
an algorithm by applying the assigned statistical methatth¢omeasurement pair list
of the algorithm. More details are available in Brel3, Mohaadr& Schallehn (2012).

4.4. Decision component

The decision component currently supports only respongeds possible optimization
criterionOC. Hence, our model tries to select the algorithm for executi@t has the
lowest execution time. We implemented the response timerimmn by selecting the
algorithm that is most likely to be the fastest. Therefore,let the model choose the
algorithm with the lowest estimated execution time to execyperatiorO.

722 S. BRER, I. GEIST, E. SCHALLEHN, M. MORY AND G. SAAKE

5. Constructing hybrid query sequences

We present a greedy approach to construct a hybrid quergrequsing our decision
model. The approach does not guarantee optimal resultsntoatiuces only a low
overhead. We assume for simplicity that a logical query sage is a sequence of
operationg§og = 0102---O,. We construct a hybrid query sequence by choosing
for each operatio®; in QS the response time minimal algorithm, which leads to a
hybrid query sequend@S,yrid- Depending on whether an algorithm uses the CPU or
GPU, the operation is executed on the corresponding priocessit. LetCA(D,O)

be a function, which chooses the fastest algorithfor a given data sdd and an op-
erationO. It uses the functiofes; to compute the estimated execution times for the
algorithms.Teg; considers the time needed to copy data to and from the GPU nyemo
in the case a GPU algorithm is selected. Hel@&D,O) chooses a GPU algorithm
only if the execution time of a CPU algorithm is higher thae #xecution time of a
GPU algorithm and the needed data transfer times togetee€CASA) be a function
that returns an algorithm sequence needed to executetalgaoki In case of a CPU
algorithm,CASA) returnsA. In the case of a GPU algorithr@ASA) returns a se-
quence of three algorithms. The firstAgpy(D), which copies the input data from the
CPU RAM to the GPU RAM (host to device). The secondiigpy(D) that processes
the data seD on the GPU. The third i#\pyb(Dresulti), Which transfers the result set
back to the CPU RAM (device to host). In case of a CPU algorjtbperationO; is
substituted by cpu (D).

o Test(D;A) if A= ACPU
TesD.A) = {Test(Acpy(D)A(D)Acpyb(Dresun)) otherwise (1)
CA(D,0) = Awith Tes(D, A) = min{Test(D, A)|A € AR} 2)
A(D) if A= Acpy
CASA) = 3
e {ACPV(D>A(D)Acpyb(Dresu|t) otherwise. (3)

We formalize our approach in Algorithm 1. In linds-6, we construct the optimal
query sequence using the functid®a(D,0) andCASA) of our decision model by
choosing the best expected algorithm for each operationdrgtiery. The algorithm
leads to two succeeding copy operations in different divast when two succeeding
operations are executed on the GPU. This unnecessary cepgtimms are removed by
the algorithmin lines 7-11.

Example: For the following example, we omit the data sets in the atbarinotation.
We consider selections (S), projections (P), joins (J), grudipings (G). The query
plan from Fig. 1 as query sequence is written like tldgOsO;0pO¢. The following
hybrid query sequence is the result of the first loop in athari

AscruAscPUACpyAL,GPUACpybACcpyAP.GPUAC pybAG,CPU-

Cost based optimization of hybrid CPU/GPU query plans 723

Algorithm 1 Construction 0QSyurig from QSog with the Greedy Algorithm

Input: QSog = (O1,DY);--;(On, DM
Output: Qshybrid:Al"'Am

1 QShybria =0

2: for Oj in QSeg do
A=CA(D',0)
AS=CASA)
appendASto QSyybrid

end for

: for Ay in QShyprig do

if (Ai = Acpyn(D) and A1 = Acpy(D)) then
deleteAA;i ;1 from QSyyprid

10. endif

11: end for

© XN R ®

After the removal of unnecessary copy operations in therstamp of the algorithm,
the final result is

AscruAscPUACpyALGPUARGPUACpyAG,CPU-

Since the decision model decided to use a GPU algorithm ircages, we can assume
that the response time of the hybrid plan is smaller thanithe of the pure CPU plan.

Discussion of the greedy algorithm: Our proposed algorithm is not guaranteed to
generate an optimal hybrid query sequence in all cases f®mptioblem. Execut-
ing a single operation on the GPU might be more expensive tisarg the CPU.
However, executing a sequence of operations on the GPU mdgsber than exe-
cuting them entirely on the CPU. We consider for the cost aamatpn no concur-
rent copying and processing and hence, sum up the times alfgaltithms in a plan
to compute the execution time of a query sequence. In thimphka we will use
the execution times shown in Table 2. Consider the queryesemrOsOsO;0p0g
and assume the algorithm proces€®s Then Tes((AcpyA1.crulcpy) IS greater than
Test(Ascpu) (3+2+ 3= 8> 5) and the algorithm decides for the CPU algorithm for
the Join. However, if the algorithm had considef@gd and the success@p, then

it would have seen tha—rest(Acp)AJ,GPUAP,GPUAcpyb) is less thanTest(A\]ycpuAgcpu)
(3+2+1+3=9<5+5), so the usage of the GPU algorithms for the Join and the
Projection would result in a cheaper query sequence. Sirecalgorithm only chooses
locally optimal solutions and does not look forward in thegusequence, it cannot
consider the possibility that the selection of a slower athm could lead to a faster
query sequence, because it cannot foresee the copy operatimization. However,
the algorithm is able to create a promising candidate, fotugonary or randomized
optimization algorithms.

724 S. BRER, I. GEIST, E. SCHALLEHN, M. MORY AND G. SAAKE

Table 2. Example execution times of algorithms for the giexample data sets
Processing unit Os | O3 | Op | Og | Ocpy | Ocpyb
CPU 1 |5 |5 2 3 3
GPU 3 |12 |1 7 - -

6. Costmetric for computation of response time for query segences

The use of concurrent GPU kernel execution and data transfieg page locked host
memory (NVIDIA, 2012) mitigates the negative impact of empige copy operations.
In order to enable an optimizer to use this technique, costiecsdor computation of
total and response times of a query have to be developed. hisprwe extend our
concept using sequential data transfer and GPU computatiparallel data transfer
and GPU computation. To the best of our knowledge, conctikemel execution
and data transfer of the GPU are not considered in cost reétriprior work. Ilic
et al. (2011) report that they take into account the oveitgppf computation and
communication. The authors claim that the performanceamations can accurately
model the real and improved performance of the GPU. Howd#vey,did not describe
their metrics. Hence, we provide the necessary metricdsrpéper.

The input of the cost formulas are the estimated executimediof algorithms
for a given data set and device. The estimation componentiofiecision model
provides these times. To learn and improve the estimattbhesgeal execution times of
every algorithm in a query plan are collected and added asuneents pairs to the
estimation component.

6.1. Extension of existing metrics

We now extend the sequential metrics. In general, a GPU chnpoacess a data
set, if it is completely stored in the GPU RAM. However, in datmse context we
can mitigate this restriction by partitioning the data Setat allows parallel copying
and processing of different parts. Partioning is possibteoperations like selection,
projection, and aggregation. As the GPU RAM is comparablglsoompared to the
CPU RAM, it is beneficial to concurrently transfer data to @RU, process the data
on the GPU, and copy processed data back to the CPU RAM.

Traditional approaches (He et al., 2009; Kothapalli et 2009; Schaa & Kaeli,
2009) model the cost of a database operafidny using the GPU algorithrAgpy as
follows. The execution time of a GPU algorithm is the sum &ftime needed to copy
the input data from the CPU RAM to the GPU RANLfy(D)), the time to process the

data seD (Tcomp(D,A)), and the time needed to transfer the result data from the GPU

Test(D,A) = Tcpy(D) + Tcomr(D;A) + Tcpyb(Dresult)- (4)

Cost based optimization of hybrid CPU/GPU query plans 725

Equation (4) does not consider the capability of GPUs to ameatly transfer data
between CPU and GPU RAM and to process data on the GPU. Siacel#tive time
for copying data compared to the execution time of the GPWeeincreases with
processing power of the GPU (Gregg & Hazelwodd, 2011), sufiked cost metric
could lead to the decision to use the CPU, while the GPU woakktheen faster
if the concurrent data copying and processing would have loeasidered. Hence,
this metric is not suitable for the cost computation of a Ergperation and a query,
respectively.

For the new cost metric, we assume that the data is partitionean be quickly
partitioned. Furthermore, the new metric distinguisheaw/ben final results (result of
a query) and intermediate results. If data is processede@E1J and the result is an
intermediate data set, then this data can be processed bgtheperation on the GPU
without the necessity to transfer data from the CPU RAM toGi) RAM. If some
data is still missing, e.g., the second table needed form fben this data has to be
copied from the CPU to the GPU RAM.

For example, consider the selection on a tablé¢hat is followed by a join with a
second table 7, denoted as J@IT,). If the selection is performed on the GPU, then
the join J(T, T2) can be processed without any additional copying cost &id T, are
located in the GPU RAM. If 7 is not yet in the GPU RAM, it has to be copied from
the CPU RAM. If the data is partitioned, the GPU can start tiire processing after the
first part of T, arrived in the GPU RAM. This principle was used by Pirk, Maolelg
Kersten (2011), too. However, caching of intermediatelteswould only be possible,
if there is enough space available in the GPU RAM. For larga dats, it is possible
that an execution of an operation needs the whole GPU RAMyen a partitioning
of the input data becomes necessary, if the whole data set riutefit in the GPU
RAM. Therefore, the physical constraints of the hardwareshia be considered during
optimization process. We now extend the traditional mefioc total and response time
computation considering partitioning and concurrent daasfer.

6.2. Computation of total execution time

For total execution time computation, we extend the metriEquation (4) to the parti-
tioning approach. We do not consider partitioning time shse we assume it is negli-
gible. A data seD is partitioned intan partsPy, P, ..., P,. This results in Equation (5)
for total execution time of a GPU algorithm:

Tiotal (D, A) = <_iTCPy(P|) . NG(R)) + _iTcomp(PlaA)

+ <_iTcpyb(o(Pl)) : FR(O(H))) . (5)

The total executiofiqta time consists of the sum of the execution times of each
part. Thereby, we consider the location of a part. If a pars located in the GPU

726 S. BRER, I. GEIST, E. SCHALLEHN, M. MORY AND G. SAAKE

RAM, the transfer timeTcpy(P) - NG(R) is zero NG(R) = 0). Equally, if the re-
sult is not final and reused in a later operation, the datanwillbe copied back. So,
Tepyn(O(R)) - FR(O(R)) is zero in this case.

6.3. Computation of response time for single operations

Equation (5) does not consider the concurrent executioratsf ttansfer to and from
GPU RAM and processing on the GPU. The steps that can be danercently are not
considered in (5). Let the data d&tbe partitioned intd”, P, ..., P. The algorithmA
processe® on the GPU. The GPU algorithm starts the processing dfrectly after
the first parP;, has been completely transferred into the GPU RAM. The cparging
resultPesyit1 is either transferred back to the CPU RAM or kept in the GPU RAM
it will be needed in a subsequent operation. After thisatization step, the execution
time of subsequent processing pdfts; is the maximum time of the data transfer of
the following part? ;> to GPU RAM, the computation of the paat, 1, or transfer back
of the last parB to the CPU RAM. We summarize this in the function

maxmaxXTepy(P+2), TecomgP+1,A), Te pyb(Presulti))-

Besides the initialization step, we also have to procedallsethe last part, i.e., the
GPU processing of paR, and the data transfer &fesuin. Furthermore, we will in-
clude the location of a part into the basic formula by usirg fimctionNG(R) and
FR(Pesuiti)- If a partis already in the GPU RAMNG = 0), we do not have to transfer
it. If a result is not a final resulR(Presuiti) = 0), we keep the data in the GPU RAM.

Equation (6) summarizes all concepts and provides the ctatipn of the response
time of an algorithmA for a partitioned data s&@ = PP, - - P,.

Tresp(D,A) = Tepy(P1) - NG(R) 4+ maxX(Tepy(P2) - NG(R), Teomp(P1, A)) (6)
n—-2
+ Z maX(Tpr(PI+2) ' NG(Pl)aTcomp(PlJrlaA)vTcpyb(PresuILi) : FR(PresuILi))

+ ma)<Tcom[)(Pn,A)7Tcpyb(Pn—l) : FR(F)resuILi)) + Tcpyb(Pn) ' FR(Presult,i)-

We now discuss the usage of the response time metric for tbetiem of the re-
sponse time minimal sequential query plan in consideratf@oncurrent copying and
processing.

6.4. Computing the response time of a hybrid query sequence

The estimated cosfest(QSwybrid) Of @ hybrid queryQS,yurig is the sum of all es-
timated execution time%si(A) for each algorithmA in QS,ybrig With respect to con-
current copying and processingAfis a GPU algorithm. The costs correspond to the
response time of the operation sequence. Algorithm 2 aslihe computation of the
response time. If a data transfer and a computation are o@mtly processed, the

Cost based optimization of hybrid CPU/GPU query plans 727

Algorithm 2 Computation of response time for hybrid query sequence
Input: QSybrid
Output: Tresponsedf QShybrid
1: time=0
2: for Ay € QSyybrig do

3. if A== copyOperatiorthen
4: continue

5 endif

6: if Ay == Acpythen

7: A_1.DNG=1

8 else

o: A_1.DNG=0

10. endif

11: if A1 == Acpypthen
12: A+1.D.FR=1

13: else

14: A;+1.D.FR=0

15: endif

16: time =time +TresponséAi)
17: end for

flagsFR (copy back to host in parallel) &G (copy to device in parallel) are set to
true or false. The flags are evaluated by the functfoR&) andNG(P), whereP is a
part. Depending on the values, the data transfer time isop#ne overall sum or not.

6.5. Data partitioning

We now address challenges for data partitioning, which havee resolved. To be
able to utilize metrics from this section, we have to suppfiitient partitioning of the
data. We could use common partitioning schemes like rangasir partitioning. The
problem is to choose the size of the parts. Larger parts mesangarts, which lead
to better PCle bus utilization but also to higher latencyphee processing can start.
Hence, it is not a trivial task to create a partition, whichulés in minimal processing
time. Furthermore, data needs to be partitioned, if the skiettés larger than the avail-
able GPU RAM. Note that some operations cannot be procersgegéndently, e.g.,
sorting operations. A system can presort data parts, bdirthlesorting order must be
determined by a global merge step on the whole data set. HpteiGPUs are avail-
able, it is beneficial to use them for query processing. Idht is already partitioned,
the parts of the data s& can be distributed on a GPU and processed concurrently,
which is likely to significantly decrease the query respditee. We address this issue
in future work.

728 S. BRER, I. GEIST, E. SCHALLEHN, M. MORY AND G. SAAKE

7. The 2-copy-operation heuristic

Algorithm 3 Construction 0RQS,yhrig from QSog using two copy heuristic

Input: QSeg = (O1,D1);--;(0n, DM
Output: Qshybrid =A;---An

1: Tminimal resp= ®

2: QSybria =0

3 QSlybrid min=0

4: for i =;i < |QSqg|;i+ + do

5. for j=;j <|QSeg|—i;j++do

6: QSyhrid =create_hybrid_query sequence _candida®y, i, j)
I8 if Tresp(QShybrid) < Tminimal respthen
8: Tminimal resp= Tresp(QShybrid)

o: QSybrid min= QShybrid
10: end if
11: end for
12: end for

=
w

: return: QSyybrid min

We already discussed the fact that the greedy hybrid quepyesee construction
algorithm is not optimal. Therefore, we present an optitidraalgorithm that uses
the new cost metrics presented in Section 6 and that allolysten data transfers in
a sequence. The refined approach is based on the observiaGoegy & Hazelwood
(2011) that copy operations have significant overhead and &&orithms are often
faster. Hence, it is very likely that an optimal hybrid quesguence contains a min-
imum of copy operations. Therefore, we allow at most two copgrations in one
hybrid query sequence. That means, all hybrid query se@sesfdhe form

A1 cruPocpu - ALcPUACpYA 1 1,6PU * * - Aj GPUACpYA] +1,cPU * * - AnCPU-

wherej >i,n>i>1n>j>1, are allowed. The allowed set of sequences also
includes pure CPU plans as well as pure GPU plans. The 2-Opm@yation heuristic
reduces the optimization space from exponential in numbeperations to quadratic

in number of operations. Since the algorithms has to cregtegy plan for each point

in the reduced optimization space, our optimization athanihas cubic complexity in
the number of operations, see Algorithm 3.

After initialization of local variables (lines 1-3), thegalrithm traverses the opti-
mization space using two nested loops. The algorithm tdistembinations of posi-
tions of data transfer algorithmadpy, Acpyt). That means, it changes the position and
length of the GPU part

AcpyAi1,6PU - - Aj ePUAcpyb = SubPlarspy(i, j)

Cost based optimization of hybrid CPU/GPU query plans 729

Algorithm 4 Create hybrid query sequence candidate
Input: QSog = (Ox, D1);---;(On,D"), position gpu sequencdength
Output: QShybrid = A1+ Am

1 QSybria =0
2: for Gj in Q§og do

3: if i<positionor i>positiotH-gpu sequencdengththen
4: AZCAcpu(Di,O)
5 else
6: A= CAGpu(Di,O)
7. endif
8: AS=CASA)
9: appendASto QSyprid
10: end for

11: //delete redundant copy operations

12: for Ay in QSyybrig do

13: if (Ay = Acpyp(D) and Ai1 = Acpy(D)) then
14: deleteAjA 1 from QSyyprid

15: end if

16: end for

17: return QSyybrid

of the hybrid query sequence. The first loop changes theiposit SubPlarpy(i, j)

in the query plan where as the second loop varies the leng@hioPlarpy (i, j) (lines
4-5). For every GPU sequence, the corresponding candithteigoconstructed by
executing Algorithm 4 (line 6). The algorithm computes tegponse time of the can-
didate. The candidate is the current result if and only ifésBmated response time
of the query plan is lower than all previous observed carntdigkans (lines 6-9). The
response time is computed by Algorithm 2 that we introduce8éction 6. We con-
sider possible concurrent data transfers and computatithid way. After completion
of the loops, the minimal hybrid query sequence plan foumdtisrned (line 13).

As already mentioned, Algorithm 4 creates a candidate paraflogical query
sequence and the positigositionand lengthgpu sequencdengthof the GPU part
of the query. First, the algorithm initializes the candalptan (line 1). Second, the
algorithm traverses the logical query plan and chooses a &&bfithm for operation
O if i is greater than or equal the start positipssitionof the GPU part and less than
or equal the start position of the GPU part plus the lengtthefGPU part. Other-
wise, a CPU algorithm is selected (line 3—7). Note that threcfionsCAcpy (D', 0)
andCAgpy(D',0) choose the best available CPU and GPU algorithm, respagtive
using our decision model. In the next step, the funcGdsis called and the returned
algorithm sequence is added to the hybrid query sequencig. Algorithm 1, the use

of the functionCASmay lead to redundant copy operations that have to be removed

from the hybrid query plan (line 12—-16). In the last step,dbestructed candidate plan

730 S. BRER, I. GEIST, E. SCHALLEHN, M. MORY AND G. SAAKE

is returned (line 17).

Note that the 2-Copy-Operation heuristic is not guaranteefind the response
time minimal query plan. If the optimal plan uses more thab tepy operations,
the heuristic chooses a suboptimal plan. The 2-Copy-Oiperheuristic considers the
investigation of sequences of operations. In contrasjtbedy algorithm only uses lo-
cal decisions. Therefore, it is more likely that the 2-Cdpgeration heuristic produces
better hybrid query sequences than the greedy approachedovthe algorithm has a
cubic time complexity compared to the linear time complegitthe greedy approach.
Furthermore, the 2-Copy-Operation heuristic creates dmtia number of candidate
hybrid query sequences, while the greedy approach creaetyeone query sequence.
We will investigate in future work, under what conditiondyieh algorithm is better.

8. Extension: query as tree of operations

We extend our discussed concepts and algorithms to suppery drees using se-
quences as building blocks.

8.1. Optimization problem for query trees

Similar as for query sequences, we have to remove redundagtaperations from
a query tree. Therefore, we adapt our algorithms for seqeetmtrees. A tree node
nodeis a 7-tuple (d, name parent left, right, A, D), whereid is the unique identifier
of the nodenameis the name of the nodearent left, right are the parent node, left
and right child andA is the algorithm executed by the node (or Opera@dior logical
query tree)D is the result data set, after the algorithm of the node wasuggd.

For simplicity, we assume that neither the Critical QuenalEnge, nor the Opti-
mization Impact Challenge of the discussed challengesdti&e?.2 occur for a hybrid
query tree. If the Copy Serialization Challenge or the Exieaulime Prediction Chal-
lenge occur in a query tree, we can create the correspondeny gequence, because
the operations in a query sequence are processed segyential

8.2. Constructing hybrid query trees

To optimize query trees, we redefine the functiG@gD, O) andTest((A, D) and modify
our algorithms.

Let CA(D, O) be a function, which chooses the fastest algorithfor a given data
setD and an operatio®. It uses the functiofeg; to compute estimated execution
times for algorithms.Teg: considers the time needed to transfer data to and from the
GPU RAM in the case of a selected GPU algorithm. He@&D, O) chooses a GPU
algorithm only, if the execution time of a CPU algorithm isgter than the execu-
tion time of a GPU algorithm plus the time needed for the detadfers. Note that
we can have two data transfers from the CPU to the GPU RAM,usecave allow
binary operations. Hence, they are considered in EquatipnTheCASfunction is
replaced by the functio@ST(nodé (create sub tree), which returns a sub tree needed

Cost based optimization of hybrid CPU/GPU query plans 731

Acpyn(node.D) Q performs computation on CPU
O performs computation on GPU

Agpy(node.left.D,node.right.D)

4 N copies data from the
\] CPURAM to the GPU RAM

7 N\ ~ —
\ \ P i
-__] -_] ; copies data back from the
Aoy, (node.left.D) Acyy(node.right.D) GPU RAM to the CPU RAM

Figure 3. Example: subtree generated by algorithm 5

to execute algorithnA on the chosen processing device. In case of a CPU algorithm,
CST(node returns a node wherg& is the selected algorithm. In the case of a GPU
algorithm,CST(node returns a sub tree with tree levels. Depending on whether the
OperationO is unary or binary, level 2 contains one node or two nodesghvekecute
copy operations from the CPU RAM to the GPU RAM using fhgy algorithm. The
computation node is stored in level 1 and does the actuaépsirng. It has the nodes in
level 2 as its child nodes. If the computation node executesaay operation, then the
preceding copy node is the left child. The parent of the cdatmn node is stored in
level 0, which executes a copy operation from the GPU RAM &GPU RAM using

the Acpyp algorithm. Fig. 3 displays an example subtree. Note thatpudation nodes

are either white or gray, where white nodes denote a GPUiligpand a gray node a
CPU algorithm.

Test(nodeD,A) if A= Acpu

Test(nodeleft.D, Acpy)

Test(NodeA) = +Test(noderight.D, Acpy) 7)
+Test(nodeleft.D,

noderight.D,Agpu)

+Test(NOd eD7Acpyb) otherwise

CA(node Q) = Awith Tesi(node A) = min{ Tes((node A)|A € ARy} (8)

We adapt Algorithm 1 for trees as follows. We stick to the pifie to choose a
GPU algorithm only if it is faster than a CPU algorithm incilugl the copy overhead.
However, we have to implement the functio®T(nodé, which replace€A(D, O), in
algorithm 5. The algorithm returns the passed node (lineiPbexecutes a CPU algo-
rithm and constructs a subtree including copy operationa foode executing a GPU
algorithm (lines 2—23). The algorithm takes care of creathre nodes and integrate
them in the tree by updating the node pointersade the child nodes ofiodeand the
parent node ofiode

732 S. BRER, I. GEIST, E. SCHALLEHN, M. MORY AND G. SAAKE

Algorithm 5 ConstructSubtree(node)

Input: Treenode node

Output: Qpny(Tree) forGPUalgorithminnode
1: if node.A==Agpy then
2: leftchild = createNode(odele ft.D,Acpy)

leftchild.parent=node

leftchild.left=node.left

if node.left!=NULLthen
node.left.parent=leftchild

end if

node.left=leftchild

if node.right!'=NULLthen

10: rightchild = createNod@&pderight.D,Acpy)

11 rightchild.parent=node

12: rightchild.right=node.right

13: node.right.parent=rightchild

14: endif

15: node.right=rightchild

16: newparent = createNodefdeD,Acpyh)

17: if node.parent.left'=nodéen

© o N ®

18: node.parent.left=newparent
19: else

20: node.parent.right=newparent
21: endif

22: newparent.parent=node.parent
23: node.parent=newparent

24: return newparent

25: else

26: return node

27: end if

Algorithm 6 constructs a hybrid query tree plan from a logigaery tree plan
using theCST(nodé algorithm 5. First, the logical query tree is copied to a wiogk
copy, which will contain the final hybrid query tree (line 1%econd, the algorithm
calls thegetLevelorderfunction, which returns a queue that contains all nodes ®f th
hybrid query tree. For each node in the queue, the algorithits decision model
CA function, which returns the algorithm with lowest expectsecution time and
assigns the algorithm to the current node (lines 3—-4). Aideds, the algorithm uses
the functionCST(node to get an appropriate subplan. Sife8T(node creates and
integrates the subplan automatically into the hybrid qaery, the algorithm can ignore
the return value.

After the algorithm created an initial hybrid query tre@és 1-6), it has to remove
redundant copy operations from the plan (lines 7-16). #rdfore, traverses the tree

Cost based optimization of hybrid CPU/GPU query plans 733

Algorithm 6 Construct hybrid query tree for logical query tree
1: QThybria = QTiog
2: queue = getlLevelordeThybrid)
3: for all node in queu€o

4. node.A=CA(node.left.D,node.right.[D)
5. tmp = ConstructSubtree(node)
6: end for
7: for all node inQThyprig do
8: if node.A==A;pypand node.parent. A==4,, then
9: /lupdate pointer
10: node.parent.parent.left=node.left
11 node.left=node.parent.parent
12: /ldelete unneccessary copy operations
13: delete node.parent fro@Thybrid
14: delete node fron@Thyprid
15: end if
16: end for

17: return QThybrid

and deletes copy nodes if the current node use8.a, algorithm and the current
nodes parent uses &gy algorithm. We use the convention that if a node has a single
child node, the child node is the left child of the node. Hertbe algorithm updates
the left pointers of the parent and child nodes of the copyesdtine 10-11). After-
wards, the copy nodes are deleted (line 13—14). As a lasttbeplgorithm returns the
constructed hybrid query tree (line 17). Fig. 4 illustrates algorithm for an example
logical query tree.

For a hybrid query tree constructed by algorithm 6, the feitm three assertions
have to be fulfilled. First, a white and a gray node must not ibectly connected,
there has to be at least one copy operation between themn@&aemredundant copy
operations may occur in the plan. Third, at the end of theiga@xecution, the result
data have to be in the CPU RAM. If assertion one or three aréutfidted, the query
plan is not executable. If only assertion two is not fulfilléide plan is executable, but
unlikely to be beneficial with respect to the response tim@ipation criterion.

8.3. Estimating the response time of query trees

We now modify our algorithms to be able to perform the costgotation for a hybrid
query tree. The basic idea is to use the algorithm for theesszpiqueries to compute
the response time of a hybrid query tree.

For simplicity, we disallow concurrent executions of opienas on the GPU, be-
cause of the Execution Time Prediction Challenge. Addiitynwe forbid concurrent
copy operations in one direction, because of the Copy $mtain Challenge. Since
the decision model already assigned estimated executi@stfor each algorithm in

734 S. BRER, I. GEIST, E. SCHALLEHN, M. MORY AND G. SAAKE

@ e Agpy(nodeb.left.D) () \ \/ Acpy(nodeb.right.D)

/\/ ~ -

't Agpyp(node4.D)

Acpy(nodeb.left.D)

Agpy(noded.left.D)

_ Acpy(node7 left.D)
N Ay(node.right.D)

A

% Agyp(node3.D)

Agpy(node3.left.D,node.right.D)

7 N\)
IAcpy(nodeS.Ieft.D) \) \) Agpy(node3.right.D)

\T/ ~
| Awstrodet) | é Agpy(node2.left.D)

Agpy(node.left.D)

[Acpy(node1 left.0)

Figure 4. Example: constructing hybrid query tree

the hybrid query tree, we only need to find the critical patthe plan. Therefore, we
have to create a sequence query for every possible path fremobt node to one of
the leave nodes of the hybrid query tree, which is done inrélgn 7. We apply our
extended algorithm, which considers the overlapping od ttainsfer and computation,
to each created path. The path with the highest responseliatages the lower bound
of the response time of the hybrid query tree.

The upper bound is computed by turning the hybrid query m&ea hybrid query
sequence and compute its response time. Then, the datgitam&er can decide to
use a hybrid query plan for execution or to use a differemt pteg., a CPU only query
tree. Note that our cost estimation algorithm can be useld ether algorithms that
construct hybrid query trees from logical query trees.

Cost based optimization of hybrid CPU/GPU query plans 735

Algorithm 7 Computation of response time for hybrid query tree

Input: QThybrid
Output: Tresponsedf QThybrid

. Tresponsg—
: for all node inQThyprig-getLeaves(lo
path = computePath(root,node)
time = computeResponseTime(path) //considers concudatat transfer and
computation
if time>Tresponsdhen
Tresponsstime
end if
end for
return Tresponse

© ® NG

9. Related work

In this section, we will discuss related work. We discussrgagtimization in a gen-
eral context, other hybrid scheduling frameworks, leagriased execution time esti-
mation, and GPU co-processing.

9.1. Query optimization

Optimization in parallel database systems has similarstaskoptimization of GPU
co-processing: optimizing the response time and scheglolgerations to resources
(Chaudhuri, 1998). Most approaches follow the two-phas#mipation approach
(Hong & Stonebraker, 1993). First, the database optimizeates a best sequen-
tial query plan. Second, an additional optimizer allocdtes operators to the par-
allel ressources to minimize the response time (Hasane$dor& Valduriez, 1996).
Thereby, communication costs (Hasan, 1996) and differentskof shared resources
(Garofalakis & loannidis, 1997) have to be taken into ac¢ouanzelotte et al. (1994)
noticed the enlarged search space and the problem of nebhapsub-plans during
dynamic programming style enumeration. The authors shélstdandomized search
approaches during optimization have a good performangesi@ilel database systems.
Our approach is also based on the two-phase model. We seteedetial plan between
GPU and CPU. Intra-operator parallelism is covered by tHesskaptive model (BrelRet
al., 2012; Brel3, Mohammad & Schallehn, 2012). We focus oodhgmunication costs
between main memory and device memory in this work. We alse taconsider the
special situation that a GPU is a co-processor, and we doavetdsymmetric system.
For scheduling, adapted deterministic and randomizecbagpes are compared.

The parallelization of queries using threads of multi-ceystems is also related.
Krikellas, Cintra & Viglas (2010) used several greedy andaiyic programming ap-
proaches to schedule an operator tree on different thre@adsnimize the response

736 S. BRER, I. GEIST, E. SCHALLEHN, M. MORY AND G. SAAKE

time. Their approach is based on a symmetric environmentiard not have to con-
sider communication costs.

9.2. Hybrid scheduling frameworks

llic et al. (2011) showed that large benefits for database peafice can be gained
if the CPU and the GPU collaborate. They developed a genehieduling frame-
work (Ili¢ & Sousa, 2011), which is a similar approach to ours, but do¢sonsider
specifics of query processing. They applied their scheddl@mmework to databases
and tested it with two queries of the TPC-H benchmark. Howetiey do not explic-
itly discuss hybrid query processing.

Augonnet et al. (2011) develop StarPU, which can distrilpatellel tasks on het-
erogeneous processors. Both frameworks are extensibleaaedo be investigated to
which degree they can be customized, so they can be used ialzada optimizer. The
biggest difference with our decision model is that it isdaihade for use in a database
optimizer, so it provides, e.g., no task abstractions.

9.3. Learning based execution time estimation

Akdere & Cetintemel (2012) examined how analytical worklsaan be modeled.
Their approach can estimate execution times for singleatipgrs as well as queries
and is based on feature extraction. Matsunaga & Fortes j20d¥klop the PQR2
method, an approach to estimate the resource usage ofapie. The approach can
be used for execution time estimation, but needs severh$etbnds to compute one
estimation. This property makes it difficult to use the PQR&hod in a database
optimizer. In contrast, we utilize the least squares metifatle ALGLIB? for execu-
tion time estimation and observed execution times below Edaseconds. Zhang et
al. (2005) use the "transform regression technique” tavest the execution time of
XML queries. Their approach a self-tuning optimizer simitaours, but our goals and
used statistical methods differ.

9.4. GPU co-processing

Current research investigates the use of GPUs for datalpeyatmns (Bakkum &
Skadron, 2010; He et al., 2009; Pirk, Manegold & Kersten,120/alkowiak et al.,
2010). Walkowiak et al. (2010) discuss the usability of GRttdatabases and show
the applicability on the basis of an n-gram based text seangine. He et al. (2008,
2009) present the concept and implementation of relatjoivad on GPUs and of other
relational operations.

Pirk, Manegold & Kersten (2011) develop an approach to acatd indexed for-
eign key joins with GPUs. The foreign keys are streamed dwerRCle bus while
random lookups are performed on the GPU. Furthermore, titegyduce a new ap-
proach for GPU Coprocessing, which decomposes data bitwike approach uses

Ihttp://wm al glib. net/

Cost based optimization of hybrid CPU/GPU query plans 737

the GPU to process a low resolution version of the input dat GPU preselection
phase and then executes the CPU refinement phase, whereahe$inlts are com-
puted by eliminating false positives from the result lisir{P2012; Pirk et al., 2012).
Hence, their approach tries to utilize CPU and GPU equaittyijarly to our approach.
However, our model balances the load on the operation level.

Kerr, Diamos & Yalamanchili (2010) present an approach tast select a CPU
or a GPU implementation. In contrast to our decision modhairtmodel decides for
a CPU/GPU algorithm statically, whereas our decision madel do it dynamically.
Their model does not introduce overhead at runtime.

Bakkum & Skadron (2010) develop a concept and implemematfdhe SQLite
command processor on the GPU. The main target of their wathkeiscceleration of
a subset of possible SQL queries. Govindaraju et al. (20ehemt an approach to
accelerate selections and aggregations with the help ofsGPU

He et al. (2009) developed a research prototype, which imgihds relational op-
erations on CPU and GPU, respectively. They presented acuegsing scheme that
assigns operations of a query plan to suitable processimigede(CPU/GPU). The
developed cost model computes estimated execution timsiagie GPU algorithms
in consideration of copy operations. They used a two-phasienzation model for
queries. In the first phase, a relational optimizer createsparator tree. In the second
phase, the optimizer decides for every operator whethempanation is executed on
GPU, CPU, or concurrently on both. He et al. (2009) proposedxaustive search
strategy for small plans and a greedy strategy for largesptanthe second phase.
Since they used a calibration based method on top of an @&algbst model, their
approach works currently for relational databases onlgre@is our approach is more
general and works with arbitrary algorithms, e.g., for XMatabases. Our approach is
also more general because the black-box self-adaptive ailtaves the consideration
of different load situations. From this research, we codelthat a GPU is an effective
co-processor for database query processing.

Heimel (2011) created the prototy@xelotby implementing GPU algorithms of
common relational operations in MonetDB. He developeddw@stision heuristics for
choosing a processing unit for query execution. Howeveditianot consider hybrid
query plans, where the CPU and the GPU are used to executeya fuethermore,
Heimel identified two query optimizer problems. First, itanecessity to have cost
metrics, which enable the comparison of CPU and GPU alguosttSecond, the search
space is bigger since placement of query plans (and hencatimpes) have many pos-
sibilities. Hence, he pointed out the need for a hybrid queogessor and optimizer.

10. Future work

To address the problem of parallel processing of differemtrigs, we will present a
heuristic that will decide which database queries can bemeft from using the GPU,
because not all queries can benefit from GPU co-processing.

An alternative approach to deal with parallelism within &mtdween queries would
be to allow both by default, and let the GPU schedule paradiglests on its own. As

738 S. BRER, I. GEIST, E. SCHALLEHN, M. MORY AND G. SAAKE

pointed out in Section 2.2, execution times will be harderdtimate and the benefit for
single queries will decline. Nevertheless, our self-lgagrcost-estimation will adjust

to this and can find a balance, because estimated executies Will increase due to
concurrency situations. Furthermore, only queries bengfihost from a GPU-based
execution will be executed as hybrid queries based on ourithesl decision model.

This approach has to be carefully evaluated.

Since our algorithm does not generate an optimal plan inaaks, other solutions
have to be considered. Another approach to find the cheapesy glan would be
to generate a candidate set of hybrid query plans, and applgast metrics to each
of them and then choose the cheapest plan for execution. d$s&hbe benefit and
overhead of this according approaches will be examinedturéuvork. Furthermore,
we will implement our framework in our prototype, which is @emn oriented GPU
accelerated DBMS.

11. Conclusion

In this paper, we pointed out common problems that occumduttie optimization
of hybrid query processing and need to be addressed to atiowvarf effective co-
processing by the GPU during database query processing.

Furthermore, we provided a simple algorithm for constnga good hybrid query
sequence for a given logical query sequence using our sthgdtamework and ex-
tended the algorithms and concepts for hybrid query tredslitdonally, we discussed
cost metrics which consider concurrent processing andidatafer on GPU side to al-
low the optimizer to compute more realistic estimationgii@rresponse time of hybrid
guery sequences/trees.

12. Acknowledgement

The work in this paper has been partially funded by the Gerrealeral Ministry of Ed-
ucation and Science (BMBF) through the Research Programr®ahtract No. FKZ:
13N10817. We thank Mario Pukall, Siba Mohammad as well agahiewers of the
Second ADBIS workshop on GPUs In Databases for helpful faekind discussions.

13. References

AKDERE, M. and GETINTEMEL, U. (2012) Learning-based Query Performance Mod-
eling and Prediction. International Conference on Dataifigeging (ICDE).
IEEE, 390-401.

AMD CORPORATION(2011) AMD Accelerated Parallel Processing OpenCL Pro-
gramming Guiderevl.3f edition, Dec 2011.

ANDRZEJEWSK| W. and WREMBEL, R. (2010) GPU-WAH: Applying GPUs to Com-
pressing Bitmap Indexes with Word Aligned Hybrid. International Con-
ferences on Database and Expert Systems Applications: IPAZEXA (2)).
Springer, 315-329.

Cost based optimization of hybrid CPU/GPU query plans 739

AUGONNET, C., THIBAULT, S., NaMYST, R. and VACRENIER, P.A. (2011) StarPU:
a unified platform for task scheduling on heterogeneousicaué architectures.
Concurrency and Computation: Practice & Experien2g(2), 187—198.

AUGUSTYN, D.R. and ZbErRoOwSK|, S. (2012) Applying CUDA Technologyin DCT-
Based Method of Query Selectivity Estimation. Becond ADBIS workshop on
GPUs In Databases (GIDBpringer, 3—12.

BAGHSORKHI, S.S., EELAHAYE, M., PATEL, S.J., QRoPR W.D. and Hvu, W.M.W.
(2010) An Adaptive Performance Modeling Tool for GPU Arelitures.SIG-
PLAN Not., 45, 105-114.

BAkkUM, P. and 8ADRON, K. (2010) Accelerating SQL database operations on a
GPU with CUDA. In: 3rd Workshop on General-Purpose Computation on Graph-
ics Processing UnitsGPGPU '10, ACM, 94-103.

BEIER, F., KiLIAS, T. and \TTLER, K.U. (2012) GiST Scan Acceleration using Co-
processors. In:Eighth Internationl Workshop on Data Management on New
Hardware DaMoN’'12, ACM, 63—-69.

BRER, S., BEIER, F., RAUHE, H., SCHALLEHN, E., SATTLER, K.U. and S\AKE, G.
(2012) Automatic Selection of Processing Units for Copssagg in Databases.
In: 16th East-European Conference on Advances in Databaseméorthation
Systems (ADBISppringer, 57-70.

BRER, S., MOHAMMAD, S. and SHALLEHN, E. (2012) Self-Tuning Distribution of
DB-Operations on Hybrid CPU/GPU Platforms. I@rundlagen von Daten-
banken (GvD)CEUR-WS, 89-94.

BRER, S., £HALLEHN, E. and GIsT, |. (2012) Towards Optimization of Hybrid
CPU/GPU query Plans in Database Systems.Sacond ADBIS workshop on
GPUs In Databases (GIDBpringer, 27-35.

CHAUDHURI, S. (1998) An Overview of Query Optimization in Relationgks&ms.

In: Symposium on Principles of Database Systems (PO&BEY, 34-43.

Diamos, G., Wu, H., LELE, A., WANG, J. and W\LAMANCHILI , S. (2012) Effi-
cient Relational Algera Algorithms and Data Structures@U. Technical re-
port, Center for Experimental Research in Computer Sys{@BfS).

FANG, W., HE, B. and lwo., Q. (2010) Database Compression on Graphics Proces-
sors.Proceedings of the VLDB Endowment (PVLD®)670-680.

GAROFALAKIS, M.N. and IbANNIDIS, Y. (1997) Parallel Query Scheduling and Op-
timization with Time- and Space-Shared Resources3id:International Con-
ference on Very Large Data BaseéLDB'97. Morgan Kaufmann Publishers
Inc., 296-305.

GETOOR, L., TASKAR, B. and KOLLER, D. (2001) Selectivity estimation using prob-
abilistic models. In:International Conference on Management of Da®G-
MOD’06, ACM, 325-336.

GOVINDARAJU, N., GRrAY, J., KUMAR, R. and MANOCH, D. (2006) GPUTeraSort:
High Performance Graphics Coprocessor Sorting for Largalizese Manage-
ment. In: SIGMOD International Conference on Management of D&HG-
MOD’06, ACM, 325-336.

GOVINDARAJU, N.K., LLOYD, B., WANG, W., LIN, M. and MANOCHA, D. (2004)

740 S. BRER, I. GEIST, E. SCHALLEHN, M. MORY AND G. SAAKE

Fast Computation of Database Operations using GraphicegsorsSIGMOD
International Conference on Management of Da®GMOD '04, pages 215—
226. ACM.

GREGG, C. and HhzeLwoob, K. (2010) Where is the data? Why You Cannot De-
bate CPU vs. GPU Performance without the Answer. Rnoceedings of the
IEEE International Symposium on Performance Analysis ste®ys and Soft-
ware, ISPASS’11, IEEEE, 134-144.

HAsAN, W., FLOREScU, D. and \ALDURIEZ, P. (1996) Open Issuesin Parallel Que-
ry Optimization.SIGMOD Record25(3), 28—33.

HE, B., Lu, M., YANG, K., FANG, K., GOVINDARAJU, N.K., Luo, Q.and 8NDER,
P.V. (2009) Relational Query Coprocessing on GraphicsdasmrsACM Trans.
Database Syst34(21),1-21(39).

HE, B., YANG, K., FANG, R., Lu, M., GOVINDARAJU, N., Luo, Q. and &NDER,

P. (2008) Relational Joins on Graphics ProcessorSIGMOD International
Conference on Management of DaBIGMOD '08, ACM, 511-524.

HE, B., and YU, J.X (2011) High-Throuhput Transaction Executions on GiegpPro-
cessorsProceedings of the VLDB Endowment (PVLD&D), 314—-325.

HEIMEL, M. and MARKL, V. (2012) A First Step Towars GPU-assisted Query Op-
timization. In: Third International Workshop on Accelerating Data Manage-
ment Systems Using Modern Processor and Storage ArchigsctdADMS’12)
www.adams-conf.org/heimel_adms12.pgf.

HEIMEL, M. (2011) Investigating Query Optimization for a GPU-decated Data-
base. Master’s thesis, Technische Universitat BerlingtEleal Engineering and
Computer Science, Department of Software Engineering dveietical Com-
puter Science.

HONG, S. and Km, H. (2009) An Analytical Model for a GPU Architecutre with
Memory-level and Thread-level Parallelism AwarneS$GARCH Comput. Ar-
chit. News,37152-163.

HONG, W. and SONEBRAKER, M. (1993) Optimization of Parallel Query Execu-
tion Plans in XPRSDistributed and Parallel Database$(1), 9—32.

ILIC, A., PRATAS, F., TRANCOSQ, P. and ®usa, L. (2011) High Performance Sci-
entific Computing with Special Emphasis on Current Capéddliand Future
Perspectives. In:High-Performance Computing on Heterogeneous Systems:
Database Queries on CPU and GPIDS Press, 202-222.

ILIE, A. and SusA, L. (2011) CHPS: An Environment for Collaborative Executio
on Heterogeneous Desktop Systerfrgernational Journal of Networking and
Computing (IINC)1(1).

KALDEWEY, T., LOHMAN, G., MUELLER, R. and \bLK, P. (2012) GPU Join Pro-
cessing Revisited. InEighth International Workshop on data Management on
New Hardware DaMoN’12, ACM, 55-62.

KERR, A., DIAMOS, G. and YALAMANCHILI , S. (2010) Modeling GPU-CPU Work-
loads and Systems. In3rd Workshop on General-Purpose Computation on
Graphics Processing Unit&SPGPU '10, ACM, 31-42.

KOTHAPALLI, K., MUKHERJEE, R., REHMAN, M.S., RATIDAR, S., Narayanan, P.J.

Cost based optimization of hybrid CPU/GPU query plans 741

and RINATHAN, K. (2009) A Perfromance Prediction Model for the CUDA
GPGPU Platform. Ininternational Conference on High Performance Comput-
ing (HIPC), IEEE, 463-472.

KIRKELLAS, M., CINTRA, M. and VIGLAS, S. (2010) Scheduling threads for ibn-
traquery parallelism on multicore processors. Techniegdd®t EDI-INFR-RR-
1345, University oof Edinburgh, School of informatics phttwww.inf.ed.ac.uk/
publications/report/1345.html.

LANZELOTTE, R.S.G., MMLDURIEZ, P., ZAiT and ZANE, M. (1994) Invited project
review: Industrial-strength parallel query optimizatiassues and lessonnf.
Syst, 19(4), 311-330.

LAUER, T., DATTA, A., KHADIKOV, Z. and ANSELM, C. (2010) Exploring Graphics
Processing Units as Parallel Coprocessors for Online Aggi@n. In:Interna-
tional Workshop on Data warehousing and OLAP, DOLAR’AGM, 77-84.

MATSUNAGA, A. and FORTES J.A.B. (2010) . On the Use of Machine Learning to
Predict the Time and Resources Consumed by Applicationsinternational
Conference on Cluster Cloud and Grid Computia§5-504. IEEE.

MoussALl, R., HALSTEAD, R., SAooLUM, M., NAJJAR, W. and TSOTRAS V.J.
(2011) Efficient XML Path Filtering Using GPUs. INMLDB-Workshop on Acel-
erating Data Management Systems Using Modern ProcessoiSamege Ar-
chitecutres (ADMS)www.adams-conf.org/p9-MOUSSALLI.pdf.

NIVIDIA (2012) NVIDIA CUDA C Programming Guide. http://deloper.download.
nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_€dgPamming
Guide.pdf, 30—34, Version 4.0, [Online; accessed 1-May220

PIRK, H. (2012) Efficient Cross-Device Query ProcessiAmnceedings of the VLDB
Endowment

PIRK, H., MANEGOLD, S. and KERSTEN M. (2011) Accelerating Foreign-Key Joins
using Asymmetric Memory Channels. IMLDB - Workshop on Accelerating
Data Management Systems Using Modern Processor and Stéraféectures
(ADMS) VLDB Endowment, 585-597.

PIRK, H., SELLAM, T., MANEGOLD, S. and KERSTEN M. (2012) X-Device Query
Processing by Bitwise Distribution. IiRroceedings of the Eighth International
Workshop on Data Management on New Hardw&aMoN '12, 48-54. ACM.

SANDERS, J. and KANDROT, E. (2010) CUDA by Example: An Introduction to Gene-
ral-Purpose GPU ProgrammingAddison-Wesley Professional, 1st edition.

ScHAA, D. and KaeLl, D. (2009) Exploring the Multiple-GPU Desing Space. In:
International Symposium on Parallel & Distributed Prociegs IPDPS’'09. IEEE,
1-12.

WALKOWIAK , S., WAaWRUCH, K., NOWOTKA, M., LIGowskil, L. and RUDNICKI, W.
(2010) Exploring Utilisation of GPU for Database Appliaats.Procedia Com-
puter Sciencgl(1), 505-513.

ZHANG, N., HAAs, P.J., dSIFOvVsKI, V., LOHMAN, G.M. and ZHANG, C. (2005)
Statistical Learning Techniques for Costing XML Queries:: International
Conference on Very Large Data Bas&4 DB '05, VLDB Endowment, 289—
300.

742 S. BRER, I. GEIST, E. SCHALLEHN, M. MORY AND G. SAAKE

ZHANG, Y. and QVENS, J.D. (2011) A Quantitative Performance Analysis Model for
GPU ArchitecturesComputer Engineerindg382—393.

