PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assessment of the Possibility of Imitating Experts’ Aesthetic Judgments about the Impact of Knots on the Beauty of Furniture Fronts Made of Pine Wood

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Our research aims to reconstruct expert preferences regarding the visual attractiveness of furniture fronts made of pine wood using machine learning algorithms. A numerical experiment was performed using five machine learning algorithms of various paradigms. To find the answer to the question of what determines the expert’s decision, we determined the importance of variables for some machine learning models. For random forest and classification trees, it involves the overall reduction in node impurities resulting from variable splitting, while for neural networks it uses the Garson algorithm. Based on the numerical experiments we can conclude that the best results of expert decision reconstruction are provided by a neural network model. The expert’s decision is better reconstructed for more beautiful images. The decision for nice images is made based on the best 4 or 5 variables, while for ugly images many more features are important. Prettier images and those for which the expert’s decision is better reconstructed have fewer knots.
Rocznik
Strony
67--88
Opis fizyczny
Bibliogr. 37 poz., il., rys., tab.
Twórcy
  • Institute of Information Technology, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
autor
  • Institute of Information Technology, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
  • nstitute of Wood Sciences and Furniture, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
  • Institute of Wood Sciences and Furniture, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
Bibliografia
  • [1] M. R. Antal, D. Domljan, and P. G. Horváth. Functionality and aesthetics of furniture – Numerical expression of subjective value. Drvna industrija, 67(4):323-332, 2017. doi:10.5552/drind.2016.1544.
  • [2] L. Breiman. Random forests. Machine Learning, 45(1):5-32, 2001. doi:10.1023/a:1010933404324.
  • [3] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification And Regression Trees. Routledge, Oct 2017. doi:10.1201/9781315139470.
  • [4] I. Cetiner, A. Ali Var, and H. Cetiner. Classification of knot defect types using wavelets and KNN. Elektronika i Elektrotechnika, 22(6), 2016. doi:10.5755/j01.eie.22.6.17227.
  • [5] M. Chen and J. H. Lyu. Aesthetic evaluation of furniture design based on anp method. Applied Mechanics and Materials, 574:318-323, 2014. doi:10.4028/www.scientific.net/amm.574.318.
  • [6] L. Deng and G. Wang. Quantitative evaluation of visual aesthetics of human-machine interaction interface layout. Computational Intelligence and Neuroscience, 2020:1-14, 2020. doi:10.1155/2020/9815937.
  • [7] J. Fürnkranz and E. Hüllermeier. Preference learning. In: C. Sammut and G. I. Webb, eds., Encyclopedia of Machine Learning, p. 789-795. Springer US, Boston, MA, 2011. doi:10.1007/978-0-387-30164-8_662.
  • [8] M. Gagolewski and J. Lasek. Learning experts’ preferences from informetric data. In: Advancesin Intelligent Systems Research, ifsa-eusflat-15. Atlantis Press, 2015. doi:10.2991/ifsa-eusflat-15.2015.70.
  • [9] K. Gajowniczek, Y. Liang, T. Friedman, T. Ząbkowski, and G. Van den Broeck. Semantic and generalized entropy loss functions for semi-supervised deep learning. Entropy, 22(3):334, 2020.doi:10.3390/e22030334.
  • [10] K. Gajowniczek, A. Orłowski, and T. Ząbkowski. Simulation study on the application of the generalized entropy concept in artificial neural networks. Entropy, 20(4):249, 2018. doi:10.3390/e20040249.
  • [11] G. D. Garson. Interpreting neural-network connection weights.AI Expert, 6(4):46-51, 1991.https://dl.acm.org/doi/10.5555/129449.129452.
  • [12] S. Gold and F. Rubik. Consumer attitudes towards timber as a construction material and towards timber frame houses - selected findings of a representative survey among the German population. Journal of Cleaner Production, 17(2):303-309, 2009. doi:10.1016/j.jclepro.2008.07.001.
  • [13] T. A. Guzel. Consumer attitudes toward preference and use of wood, woodenware, and furniture: A sample from Kayseri, Turkey. BioResources, 15(1):28-37, 2019. doi:10.15376/biores.15.1.28-37.
  • [14] J. Han, H. Forbes, and D. Schaefer. An exploration of how creativity, functionality, and aesthetics are related in design. Research in Engineering Design, 32(3):289-307, 2021. doi:10.1007/s00163-021-00366-9.
  • [15] U. R. Hashim, S. Z. Hashim, and A. K. Muda. Automated vision inspection of timber surface defect: A review. Jurnal Teknologi, 77(20), 2015. doi:10.11113/jt.v77.6562.
  • [16] S. Kizito, A. Y. Banana, M. Buyinza, J. R. S. Kabogozza, R. K. Kambugu, et al. Consumer satisfaction with wooden furniture: an empirical study of household products produced by small and medium scale enterprises in Uganda. Journal of the Indian Academy of Wood Science, 9(1):1-13,2012. doi:10.1007/s13196-012-0068-1.
  • [17] A. Krähenbühl, B. Kerautret, I. Debled-Rennesson, F. Longuetaud, and F. Mothe.Knot Detectionin X-Ray CT Images of Wood, p. 209-218. Springer Berlin Heidelberg, 2012. doi:10.1007/978-3-642-33191-6_21.
  • [18] M. Kuhn. Building predictive models in R using the caret package. Journal of Statistical Software,28(5), 2008. doi:10.18637/jss.v028.i05.
  • [19] J. Parmar, S. Chouhan, V. Raychoudhury, and S. Rathore. Open-world machine learning: Applications, challenges, and opportunities. ACM Computing Surveys, 55(10):1-37, 2023. doi:10.1145/3561381.
  • [20] R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2023.https://www.R-project.org/.
  • [21] M. T. Ribeiro, S. Singh, and C. Guestrin. „Why should I trust you?”: Explaining the predictions of any classifier. In: Proc. 22nd ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining, KDD ’16, p. 1135-1144. ACM, New York, NY, USA, 13-17 Aug 2016. doi:10.1145/2939672.2939778.
  • [22] B. D. Ripley. Pattern Recognition and Neural Networks. Cambridge University Press, Jan 1996. doi:10.1017/cbo9780511812651.
  • [23] B. Schölkopf, A. J. Smola, R. C. Williamson, and P. L. Bartlett. New support vector algorithms. Neural Computation, 12(5):1207-1245, 2000. doi:10.1162/089976600300015565.
  • [24] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, et al. Grad-cam: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision,128(2):336-359, 2019. doi:10.1007/s11263-019-01228-7.
  • [25] J. Y. Shin, C. Kim, and H. J. Hwang. Prior preference learning from experts: Designing a reward with active inference. Neurocomputing, 492:508-515, 2022. doi:10.1016/j.neucom.2021.12.042.
  • [26] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller. Striving for simplicity: The all convolutional net. arXiv, 2015. ArXiv.1412.6806. doi:10.48550/arXiv.1412.6806.
  • [27] M. Sundararajan, A. Taly, and Q. Yan. Axiomatic attribution for deep networks. In: Proc. 34th Int. Conf. Machine Learning, vol. 70 of ICML’17, p. 3319-3328. JMLR.org, 6-11 Aug 2017. https://dl.acm.org/doi/abs/10.5555/3305890.3306024.
  • [28] W. N. Venables and B. D. Ripley.Modern Applied Statistics with S. Springer New York, 2002. doi:10.1007/978-0-387-21706-2.
  • [29] M. N. Volkovs, H. Larochelle, and R. S. Zemel. Learning to rank by aggregating expert preferences. In: Proc. 21st ACM Int. Conf. Information and Knowledge Management, CIKM’12. ACM, Maui, Hawaii, USA, 29 Oct - 2 Nov 2012. doi:10.1145/2396761.2396868.
  • [30] C. van Winkelen and R. McDermott. Learning expert thinking processes: using KM to structure the development of expertise. Journal of Knowledge Management, 14(4):557-572, 2010. doi:10.1108/13673271011059527.
  • [31] C. Xiaolei, S. Jun, and L. Bing. Customer preferences for kitchen cabinets in China using conjoint analysis. Journal of Chemical and Pharmaceutical Research,6(2):14-22, 2014. https://www.jocpr.com/articles/customer-preferences-for-kitchen-cabinets-in-china-using-conjoint-analysis.pdf.
  • [32] S. Yoon, H. Oh, and J. Y. Cho. Understanding furniture design choices using a 3D virtual showroom. Journal of Interior Design, 35(3):33-50, 2010. doi:10.1111/j.1939-1668.2010.01041.x.
  • [33] M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. In: D. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars, eds., Computer Vision - Proc. ECCV 2014, pp. 818-833. Springer International Publishing, Cham, Zurich, Switzerland, 6-12 Sep 2014. doi:10.1007/978-3-319-10590-1_53.
  • [34] L. Zeng and D. Liu. A study on the model of furniture aesthetic value based on fuzzy AHP comprehensive evaluation. In: Proc. 2010 7th Int. Conf. Fuzzy Systems and Knowledge Discovery. IEEE, Yantai, China, 10-12 Aug 2010. doi:10.1109/fskd.2010.5569152.
  • [35] L. M. Zintgraf, T. S. Cohen, T. Adel, and M. Welling. Visualizing deep neural network decisions: Prediction difference analysis. arXiv, 2017. ArXiv.1702.04595. doi:10.48550/arXiv.1702.04595.
  • [36] K. Śmietańska and J. Górski. Impact of visible knots on relative visual attractiveness of furniture fronts made of pine wood (pinus sylvestris l.).Wood Material Science & Engineering,18(5):1749-1754, 2023. doi:10.1080/17480272.2023.2186263.
  • [37] K. Śmietańska, P. Podziewski, M. Bator, and J. Górski. Automated monitoring of delamination factor during up (conventional) and down (climb) milling of melamine-faced MDF using im-age processing methods. European Journal of Wood and Wood Products, 78(3):613-615, 2020. doi:10.1007/s00107-020-01518-9.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f6500fe3-59db-4e71-a787-5f7e72787426
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.