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1. INTRODUCTION

In his seminal papers [21, 22] of 1836 Charles Sturm proved several comparison and
oscillation results for second order symmetric differential equations on a finite interval
that proved fundamental for further development of the spectral theory for differential
and abstract operators. In modern language the Sturm oscillation theorem can be
stated as follows.

Assume that p, q, and r are real-valued functions on a finite interval I = [a, b]
such that p > 0 and r > 0 a.e. and 1/p, q, and r are integrable over I. Consider the
Sturm-Liouville eigenvalue problem

−(py′)′ + qy = λry (1.1)

subject to e.g. the Dirichlet boundary conditions

y(a) = y(b) = 0. (1.2)

It then follows from the results of Sturm that the eigenvalues of (1.1)–(1.2) are real,
bounded below and form a discrete subset of R with the only accumulation point
at +∞. List these eigenvalues as λ0 < λ1 < λ2 < . . .; then the eigenfunction yn
corresponding to λn has precisely n interior zeros which interlace those of yn+1.
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Since then the Sturm theory has been extended in many directions, such as for
partial differential and/or higher order equations [3], difference equations [28], less
regular potentials etc.; see the historical review by Hinton [11] and the account by
Simon [26] on important recent progress, as well as the exhaustive reference lists
in these two papers. In particular, some results were established in [4, 16, 18, 25] for
differential equations on one-dimensional graphs.

In the recent paper [27], the authors developed the Sturm theory for the Sturm-
Liouville eigenvalue problem

−y′′ + qy = λy (1.3)

in the case where the potential q is a real-valued distribution from the Sobolev space
W−12 (I). Two different approaches were realized therein: the first one extending the
original method of Sturm, and the other one based on the variational principles.

A more general case of the spectral problem (1.1) with uniformly positive p ∈
L∞(I), real-valued distributions q and r belonging to W−12 (0, 1), and arbitrary sepa-
rated boundary conditions was discussed in [29]. The author rewrote equation (1.1)
as the spectral problem for a linear operator pencil, studied the latter via the
quadratic forms, and in that way established analogues of the Sturm theorems and
the Chebyshov properties of linear combinations of the eigenfunctions. Oscillation
properties of solutions to Sturm-Liouville equations with coefficients that are Borel
measures were treated in [19].

The main aim of this note is to give an alternative derivation of the Sturm com-
parison and oscillation theorems for equation (1.3) with real-valued q ∈W−12 (I). The
motivation for doing this has stemmed from our study of singular differential operators
on quantum trees [12]. To develop the Sturm theory for such operators, one builds
upon such a theory for singular operators on a single edge. However, we found that
the approach of the paper [27] does not allow direct generalization to graphs. Like
in [27], we also employ the Prüfer angle technique here, but define the Prüfer angle
in a different manner. Apart from deriving the analogues of the Sturm theorems, we
study in detail properties of the Prüfer angle that prove essential for developing the
Sturm theory for quantum trees in the forthcoming paper [12].

The paper is organized as follows. In the next section, we define rigorously the
differential equation to be studied and discuss some properties of its solutions. In
Section 3 the Prüfer angle is introduced and its properties are established by ana-
lyzing the corresponding Carathéodory equation. Finally, these results are used in
Section 4 to develop generalizations of the Sturm theory to the case of distributional
Sturm-Liouville equations (1.3).

2. DEFINITIONS

Assume that q ∈ W−12 (0, 1) is a real-valued distribution and consider the Sturm-
Liouville differential expression

τy := −y′′ + qy
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on the interval (0, 1). As multiplication in the space of distributions is not well defined
(see, however, [17] and an interesting recent development in [13]), some care should
be taken while defining the expression τ . In fact, τ and the corresponding differential
operator can be introduced in several equivalent ways, e.g., via the quadratic forms
or by approximating q by regular potentials. One of the most efficient definitions uses
the regularization by quasi-derivative technique that was first suggested by Atkinson
et al. [2] for the particular case q(x) = 1/x on the interval (−1, 1) and then developed
by Savchuk and Shkalikov [23, 24] for general q ∈ W−12 (0, 1). We also mention that
important generalizations were recently suggested by Goriunov and Mikhailets [8, 9];
a detailed treatment of the most general differential Sturm-Liouville operators was
performed by Eckhardt, Gesztesy, Nichols, and Teschl in their recent fundamental
work [6].

In this regularization approach, one takes a real-valued function u ∈ L2(0, 1) such
that q = u′ in the sense of distributions and for every absolutely continuous y denotes
by y[1] := y′ − uy its quasi-derivative; then τ acts via

τy = −
(
y[1]
)′ − uy[1] − u2y (2.1)

on its domain

dom τ := {y ∈ L2(0, 1) | y, y[1] ∈ AC(0, 1), τy ∈ L2(0, 1)}. (2.2)

It is straightforward to see that τy = −y′′ + qy in the sense of distributions, so
that (2.1)–(2.2) gives a natural generalization of the Sturm-Liouville differential ex-
pression.

As follows from the definition τ , the equality τy = λy + f can be interpreted as
the first-order system

d

dx

(
y1
y2

)
=

(
u 1

−u2 − λ −u

)(
y1
y2

)
+

(
0

−f

)
for y1 = y and the quasi-derivative y2 = y[1] = y′ − uy. This is a linear system with
an integrable matrix coefficient; therefore if f ∈ L1(0, 1), then for every point x0 ∈
[0, 1] and for every c1, c2 ∈ C the above system possesses a unique solution (y1, y2)

t

satisfying the conditions y1(x0) = c1 and y2(x0) = c2, see [20, Ch. 2]. Equivalently,
under the same assumptions the equation τy = λy + f possesses a unique solution y
satisfying the conditions y(x0) = c1 and y[1](x0) = c2. Observe also that this solution
is absolutely continuous along with its quasi-derivative y[1]; the usual derivative y′ =
y[1] + uy, on the contrary, need not be continuous.

The following lemma is well known (cf. [14] or [27]), and we give its short proof
just for the sake of completeness. We say that a function y strictly increases (resp.
decreases) through a point x0 if there exists a neighbourhood O(x0) of x0 such that
(x−x0)

(
y(x)−y(x0)

)
> 0 (resp., (x−x0)

(
y(x)−y(x0)

)
< 0) for all x ∈ O(x0)\{x0}.

Lemma 2.1. Assume that y is a solution to the equation τy = λy with λ ∈ R such
that y(x0) = 0 and y[1](x0) = c for some x0 ∈ [0, 1] and some real c. Then the
following holds:
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(i) if c = 0, then y ≡ 0 over [0, 1],
(ii) if c > 0, then y strictly increases through x0,
(iii) if c < 0, then y strictly decreases through x0.
In particular, every zero of a nontrivial solution y of the equation τy = λy is an
isolated point in [0, 1].

Proof. Part (i) follows from the uniqueness arguments preceding the lemma. To
show (ii), we note that y is real-valued and set z(x) := y(x) exp{

∫ x0

x
u(t) dt}. Then

z is real-valued and absolutely continuous along with y and, moreover, z′(x) =
y[1](x) exp{

∫ x0

x
u(t) dt}. Since y[1] remains positive in some ε-neighbourhood of the

point x0, z strictly increases in this neighbourhood thus yielding the result. Part (iii)
is established analogously.

3. THE PRÜFER ANGLE AND ITS PROPERTIES

Fix a real λ and consider a real-valued solution y(·) = y(· ;λ) of the equation τy =
λy. Similarly to the classical theory, we introduce the polar coordinates r and θ via
y(x) = r(x) sin θ(x) and y[1](x) = r(x) cos θ(x) and call θ the Prüfer angle of y.
The function θ is defined only modulo 2π; we can, however, single out a continuous
branch of θ determined e.g. by the condition θ(0) ∈ [0, 2π). Differentiating the relation
cot θ = y[1]/y, we get the differential equation1)

θ′ = (u sin θ + cos θ)2 + λ sin2 θ. (3.1)

As u only belongs to L2(0, 1) and does not possess any additional smoothness, the
right-hand side of this equation is not in general continuous. In fact, (3.1) belongs to
the class of Carathéodory equations defined as follows.

We call a differential equation

y′(x) = f(x, y(x)) (3.2)

the Carathéodory equation in a domain D of the (x, y)-plane if f satisfies the following
conditions in D:
(i) for almost all x, f(x, y) is well defined and continuous in y,
(ii) for every y, the function f(x, y) is measurable in x,
(iii) there exists an integrable function m(x) such that, for all (x, y) ∈ D,

|f(x, y)| ≤ m(x).

The Carathéodory existence theorem [7, Theorem 1.1] asserts that the Carathéodory
equation (3.2) possesses a (local) solution subject to the condition y(x0) = y0, for
every point (x0, y0) of the interior of D. The solution is understood in the integral
sense, i.e., as a continuous function satisfying the equality

y(x) = y0 +

x∫
x0

f
(
t, y(t)

)
dt (3.3)

1) Note that if θ satisfies (3.1), then so does θ+π. Since θ+π is the Prüfer angle of the solution −y,
this suggests that θ and θ + π should be identified and thus θ becomes defined only modulo π.
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in a neighbourhood of x0. If, in addition, f satisfies

(iv) there exists an integrable function l(x) such that, for all (x, y1) and (x, y2) in D,
|f(x, y1)− f(x, y2)| ≤ l(x)|y1 − y2|,

then the above solution is unique in D [7, Theorem 1.2]. We refer to [1] and the
monographs [5, Ch. 2], [7, Ch. 1], [10, Ch. 2], and [20, Ch. 2] for further details of the
theory.

Clearly, the right-hand side

f(x, y) :=
(
u(x) sin y + cos y

)2
+ λ sin2 y

of equation (3.1) satisfies (i)–(iv) in the domain D := [0, 1] × R with
m(x) = (|u(x)|+ 1)2 + |λ| and l(x) = 2m(x). We note that every solution of (3.1)
is global (i.e., defined over the whole interval [0, 1]) and absolutely continuous,
see [7, Ch. 1].

Further we observe that if θ(x∗) = 0 mod π (i.e. if sin θ(x∗) = 0), equation (3.1)
yields the equality θ′(x∗) = 1, and one expects that θ strictly increases through x∗,
just as in the classical case of integrable q. However, the fact that θ′ is discontinuous
does not allow to deduce this property from the mere fact that θ′(x∗) = 1; instead,
Lemma 2.1 becomes helpful.

Corollary 3.1. The function θ strictly increases through every point x∗, where
θ(x∗) = 0 mod π (i.e. through every zero of the corresponding solution y of τy = λy).

Proof. Parts (ii) and (iii) of Lemma 2.1 imply that cot θ = y[1]/y assumes negative
values in some left neighbourhood of x∗ and positive values in some right neighbour-
hood of x∗, thus yielding the claim.

Since the right-hand side of (3.1) increases with λ, one expects that the solution
θ(x;λ) also increases in λ. However, the standard proofs of this fact rely on continuity
of the right-hand side f and thus are not applicable to the Carathéodory equations.
Below, we justify a weaker monotonicity property for generic Carathéodory equations
and then refine it for the particular case of equation (3.1).

Lemma 3.2. Assume that D is a rectangular domain [0, 1] ×K of the (x, y)-plane,
with K = [a, b], −∞ < a < b < ∞. Assume further that functions f1 and f2 de-
fined on D satisfy the conditions (i)–(iv) and that f1(x, y) ≤ f2(x, y) a.e. in D.
Let also y1 and y2 be the global solutions of the corresponding Carathéodory equa-
tions y′j = fj

(
x, yj(x)

)
satisfying the initial conditions a < y1(0) ≤ y2(0) < b. Then

y1(x) ≤ y2(x) for all x ∈ [0, 1].

Proof. This lemma is well known for continuous fj , see [5, Corollary III.4.2]. Its
extension to Carathéodory functions fj can be obtained by approximating them by
continuous functions and establishing continuous dependence of the solutions yj on
the functions fj . The details are given below; for convenience we divide the proof into
several steps.
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Step 1. Set
x∗ := sup{x′ ∈ [0, 1] | y1(x) ≤ y2(x) on [0, x′]};

we shall prove that x∗ = 1. Since x∗ ≥ 0 and y1(x
∗) ≤ y2(x

∗), it is sufficient to
prove the following local version of the lemma: for every x0 ∈ [0, 1) with the property
that a < y1(x0) ≤ y2(x0) < b there exists a d > 0 such that y1(x) ≤ y2(x) for all
x ∈ [x0, x0 + d].
Step 2. First we show that under the above assumptions (i)–(iv) a unique solution to
equation (3.2) subject to the initial condition y(x0) = y0, with (x0, y0) ∈ [0, 1)×(a, b),
can be constructed locally using the Banach fixed point theorem.

To this end, we set c := min{y0 − a, b− y0}, take d > 0 such that

x0+d∫
x0

m(x) dx <
c

2
,

x0+d∫
x0

l(x) dx <
1

2
, (3.4)

and introduce the space C := C[x0, x0 + d] of functions continuous over [x0, x0 + d]
with the norm

‖y‖C := max
x∈[x0,x0+d]

|y(x)|.

Next, consider in the space C the nonlinear operator T defined via

Ty(x) := y0 +

x∫
x0

f(t, y(t)) dt (3.5)

for y ∈ C such that (t, y(t)) ∈ D for all t ∈ [x0, x0 + d]. Then the solution of the
equation y′ = f(x, y) on [x0, x0 + d] subject to the initial condition y(x0) = y0 is a
fixed point of the operator T .

Since

|Ty1(x)− Ty2(x)| ≤
x∫

x0

l(t)|y1(t)− y2(t)| dt ≤ 1
2‖y1 − y2‖C ,

the operator T is a contraction; moreover, the ball2)

B(y0) := {y ∈ C | ‖y − y0‖C ≤ c}

belongs to the domain of T and is mapped into itself, as follows from the estimates

‖Ty0 − y0‖C ≤
x0+d∫
x0

m(t) dt <
c

2

2) Slightly abusing the notation, we shall use y0 both for the real number in the initial condition
and for the constant function equal to y0.
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and
‖Ty − y0‖C ≤ ‖Ty − Ty0‖C + ‖Ty0 − y0‖C < 1

2‖y − y0‖C + c
2 ≤ c

for all y ∈ B(y0).
Therefore the Banach fixed point theorem gives the unique solution of the equation

y = Ty in C = C[x0, x0 + d] as the limit of Tny0 as n → ∞. This fixed point
satisfies (3.3) and thus is a solution to the Carathéodory differential equation (3.2)
satisfying the required initial condition.
Step 3. We next show that the above fixed point of the operator T depends con-
tinuously on f in some special sense. Assume that functions f1 and f2 defined on
the domain D satisfy there conditions (i)–(iv) with integrable functions mj and lj ,
j = 1, 2.

Given any x0 ∈ [0, 1) and y0 ∈ (a, b), we define c as on Step 2 and take δ ∈ (0, 1−x0]
so that (3.4) holds with m and l replaced by mj and lj , j = 1, 2. Denote by T1 and
T2 the operators defined as T on Step 2 but with f1 and f2 instead of f , and denote
by y1 and y2 the fixed points of these operators on [x0, x0 + d]. Then y1 − y2 can be
estimated in the space C := C[x0, x0 + δ] via

‖y1 − y2‖C = ‖T1y1 − T2y2‖C ≤ ‖T1y1 − T1y2‖C + ‖T1y2 − T2y2‖C ≤

≤ 1
2‖y1 − y2‖C +

x0+d∫
x0

|f1(t, y2(t))− f2(t, y2(t))| dt,

so that

‖y1 − y2‖C ≤ 2

x0+d∫
x0

sup
y∈K
|f1(t, y)− f2(t, y)| dt. (3.6)

Step 4. Next we show that, given a Carathéodory function f on D possessing the
properties (i)–(iv), there is a net fε of continuous functions on D satisfying (i)–(iv)
and such that

1∫
0

sup
y∈K
|fε(t, y)− f(t, y)| dt→ 0, ε→ 0. (3.7)

Take an arbitrary continuous function φ of compact support such that
0 ≤ φ(x) ≤ 1 for all x ∈ R and

∫
φ = 1, and put φε(x) := ε−1φ(x/ε). We then

mollify f by φε to get fε, viz.

fε(x, y) :=

∫
R

φε(x− ξ)f(ξ, y) dξ.

Denote by mε and lε the analogous mollifications of the functions m and l; then
mε and lε are continuous over [0, 1] (and thus integrable) and converge to m and l
respectively in the topology of the space L1(0, 1) [15, Theorem VI.1.10]. Next we find
that

|fε(x, y)| ≤
∫
R

φε(x− ξ)m(ξ) dξ = mε(x)
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and
|fε(x, y1)− fε(x, y2)| ≤ |y1 − y2|

∫
R

φε(x− ξ)l(ξ) dξ = |y1 − y2|lε(x),

so that fε satisfy the Carathéodory properties (iii) and (iv). Moreover, the functions
fε are continuous on D by virtue of the relations

|fε(x1, y1)− fε(x2, y2)| ≤ |fε(x1, y1)− fε(x2, y1)|+ |fε(x2, y1)− fε(x2, y2)| ≤

≤
∫
R

|φε(x1 − ξ)− φε(x2 − ξ)|m(ξ) dξ+

+ |y1 − y2|
∫
R

φε(x2 − ξ)l(ξ) dξ.

Indeed, the first summand on the right-hand side of the above inequalities tends to
zero as |x1 − x2| → 0 uniformly in y1, y2 ∈ K due to the uniform continuity of φε,
while the second term is bounded by ε−1‖l‖L1 |y1− y2|, with ‖l‖L1 denoting the norm
of l in L1(0, 1), and tends to zero as |y1 − y2| → 0 uniformly in x2 ∈ [0, 1]. Therefore
fε enjoys properties (i) and (ii) as well.

Now we set gε := fε − f and note that for each fixed y ∈ K we get

1∫
0

|gε(x, y)| dx→ 0

as ε→ 0 [15, Theorem VI.1.10]. Since K is a compactum, for every δ > 0 it possesses
a finite δ-net Kδ. Now for every y ∈ K we can find y∗ ∈ Kδ such that |y− y∗| ≤ δ, so
that

|gε(x, y)| ≤ |gε(x, y∗)|+ |gε(x, y)− gε(x, y∗)| ≤
∑
y′∈Kδ

|gε(x, y′)|+ δ(l(x) + lε(x))

and

lim sup
ε→0

1∫
0

sup
y∈K
|gε(x, y)| dx ≤ lim

ε→0

[ ∑
y′∈Kδ

1∫
0

|gε(x, y′)| dx+ δ‖l‖L1 + δ‖lε‖L1

]
= 2δ‖l‖L1 .

As δ > 0 was arbitrary, (3.7) follows.
Step 5. Now, given two functions f1 and f2 as in the assumption of the lemma, we
construct their mollifications f1,ε and f2,ε as on Step 4 and denote by yj,ε the solutions
of the equations

y′ = fj,ε
(
x, y(x)

)
subject to the initial conditions yj,ε(x0) = yj(x0). Then

‖yj,ε − yj‖C ≤ 2

x0+d∫
x0

sup
y∈K
|fj,ε(x, y)− fj(x, y)| dx→ 0
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as ε→ 0 by (3.6) and (3.7). Moreover,

f2,ε(x, y)− f1,ε(x, y) =
∫
R

φε(x− ξ)[f2(ξ, y)− f1(ξ, y)] dξ ≥ 0

a.e. in D. By [5, Corollary III.4.2], y1,ε(x) ≤ y2,ε(x) for all x ∈ [x0, x0 + d], and thus

y1(x) = lim
ε→0

y1,ε(x) ≤ lim
ε→0

y2,ε(x) = y2(x), x ∈ [x0, x0 + d].

The lemma is proved.

Remark 3.3. There is a “backward” version of this lemma claiming that
y1(x) ≥ y2(x) for x ∈ [0, 1) as soon as y1(1) ≥ y2(1). It can be derived from the
“forward” version by reversing the direction of x (i.e., by replacing x with 1− x).

We are now in position to prove monotonicity of the Prüfer angle θ with respect
to the variable λ.

Lemma 3.4. Assume that λ1 < λ2 and that θ(·;λ1) and θ(·;λ2) are solutions of
equation (3.1) satisfying the condition θ(0;λ1) ≤ θ(0;λ2). Then for every x ∈ (0, 1]
the inequality θ(x;λ1) < θ(x;λ2) holds. Likewise, if θ(1;λ1) ≥ θ(1;λ2), then
θ(x;λ1) > θ(x;λ2) for all x ∈ [0, 1).

Proof. We shall only establish the first part of the lemma, the second one being
completely analogous. The functions

fj(x, y) :=
(
u(x) sin y + cos y

)2
+ λj sin

2 y, j = 1, 2,

satisfy the assumptions of Lemma 3.2 for a compact set K = [0, π]. We observe that
the fact that K is compact was only used in the proof of that lemma to derive (3.7).
Since fj (and thus their mollifications fj,ε) are periodic in the variable y with period π,
the conclusion of Lemma 3.2 holds for the above fj with a noncompact set K = R.
As a result, no restrictions on the initial values of θ are needed and we get the
inequality θ(x;λ1) ≤ θ(x;λ2) for all x ∈ [0, 1]. It remains to prove that this inequality
is strict for all nonzero x.

First of all we prove that the set S of all x ∈ [0, 1] such that θ(x;λ1) = θ(x;λ2) is
nowhere dense in [0, 1]. Indeed, S is closed; should it contain an interval [a, b], then
the following equality would hold:

b∫
a

f1(t, θ(t;λ1)) dt =

b∫
a

f2(t, θ(t;λ1)) dt.

This would yield the relation sin θ(t;λ1) ≡ 0 for all t ∈ [x1, x0] and thus θ(t;λ1) ≡ πk,
k ∈ Z, for such x, but this is impossible in view of Corollary 3.1.

Assume that the set S contains an x0 > 0. We set θ(x0;λ1) = θ(x0;λ2) =: θ0 and
denote by x1 < x0 a point where θ(x1;λ2) > θ(x1;λ1). Further, set

θ1 := 1
2

(
θ(x1;λ2) + θ(x1;λ1)

)
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and denote by θ1(·;λ2) the solution of the equation (3.1) with λ = λ2 subject to the
initial condition θ(x1) = θ1. By Lemma 3.2, θ1(x;λ2) ≥ θ(x, λ1) for all x ∈ [x1, x0]
and, in particular, θ1(x0;λ2) ≥ θ0. On the other hand, since the trajectories of different
solutions to the equation (3.1) for λ = λ2 cannot intersect, θ(x0;λ2) > θ1(x0;λ2) ≥ θ0,
a contradiction. Therefore the set S does not contain points of (0, 1], and the proof is
complete.

More can be said on the Prüfer angle θ if its value at x = 0 is fixed.

Theorem 3.5. Assume that the Prüfer angle θ(·;λ) for the solution y(·;λ) of the
equation τy = λy satisfies the condition θ(0, λ) ≡ α ∈ [0, π) for all λ ∈ R. Then, for
every fixed x ∈ (0, 1], θ(x;λ)→ 0 as λ→ −∞ and θ(x;λ)→ +∞ as λ→ +∞.

Proof. We divide the proof in several steps.
Step 1. First we prove that there exist K > 0 and δ > 0 such that θ(x;λ) < π− δ for
all x ∈ [0, 1] and all λ ≤ −K.

Set δ := 1
2 min{π − α, π2 }. As the function F (x) :=

x∫
0

(
|u(t)| + 1

)2
dt is uniformly

continuous over [0, 1], there exists δ1 > 0 such that

F (x2)− F (x1) =
x2∫
x1

(
|u(x)|+ 1

)2
dx < δ

whenever 0 < x2 − x1 < δ1. Set now

K :=

(
‖u‖L2

+ 1
)2

δ1 sin
2 δ

,

where ‖u‖L2 denotes the norm of u in L2(0, 1); we claim that θ(x;−K) < π − δ for
all x ∈ [0, 1].

Indeed, assume that x1 < x2 are such that θ(x;−K) ∈ [δ, π− δ] for all x ∈ [x1, x2]
and, moreover, that θ(x1;−K) ≤ π − 2δ. Upon integrating (3.1) from x1 to x2, we
find that

θ(x2;−K) ≤ θ(x1;−K) +

x2∫
x1

(
|u(x)|+ 1

)2
dx−K(x2 − x1) sin2 δ.

If x2 − x1 < δ1, then the integral above is less than δ, and we find that

θ(x2;−K) < θ(x1;−K) + δ ≤ π − δ;

otherwise
x2∫
x1

(
|u(x)|+ 1

)2
dx−K(x2 − x1) sin2 δ ≤ 0

so that θ(x2;−K) ≤ θ(x1;−K) < π − δ. Since θ(0;−K) ≤ π − 2δ, θ(·;−K) never
reaches the value π − δ, thus establishing the claim.
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Step 2. For every fixed x ∈ (0, 1] the function θ(x;λ) assumes positive values and
decreases in λ. Therefore the limit θ∗(x) := limλ→−∞ θ(x;λ) exists, is non-negative
and, moreover, θ∗(x) < π by Step 1. We claim that the function θ∗ is non-increasing
on (0, 1].

Assume it is not; then there are x1 and x2, x1 < x2, such that θ∗(x1) < θ∗(x2).
Take δ > 0 such that θ∗(x2) − θ∗(x1) ≥ 3δ and introduce δ1 and K as on Step 1.
Without loss of generality we can assume that δ is taken small enough and K large
enough so that θ(x1;λ) < θ∗(x1)+δ and θ(x, λ) < π−δ, x ∈ [0, 1], whenever λ < −K,
see Step 1.

Now for every λ < −K there exists x∗ ∈ [x1, x2] such that θ(x2;λ)− θ(x∗;λ) ≥ δ
and θ(x;λ) ∈ [δ, π − δ] for all x ∈ [x∗, x2]. As on Step 1, we get the inequality

δ ≤ θ(x2, λ)− θ(x∗;λ) ≤
x2∫
x∗

(
|u(x)|+ 1

)2
dx− |λ|(x2 − x∗) sin2 δ

for all λ < −K, which, however, can hold neither if x2 − x∗ < δ1 due to the choice of
δ1 nor if x2 − x∗ ≥ δ1 due to the choice of K. The contradiction derived shows that
no such points x1 and x2 as above exist and so θ∗ is non-increasing.

Finally, assume that θ∗(x0) > 0 for some x0 ∈ (0, 1]. Then θ∗(x) ≥ θ∗(x0) for all
x ∈ [0, x0]. Choose δ ∈ (0, θ∗(x0)) and K > 0 so that θ(x;λ) < π− δ for all x ∈ [0, x0]
and all λ < −K. Since also θ(x;λ) ≥ θ∗(x0) ≥ δ for all x ∈ [0, x0] and all λ < −K,
we find that for all such λ

δ ≤ θ(x0;λ) ≤ α+
(
‖u‖L2

+ 1
)2 − |λ|x0 sin2 δ,

which is impossible. Therefore θ∗(x) = 0 for all x ∈ (0, 1] as claimed.
Step 3. For every fixed x ∈ (0, 1], the function θ(x;λ) increases in λ, whence the limit

θ∗(x) := lim
λ→∞

θ(x;λ)

exists in a generalized sense, i.e., as a finite number or +∞. Observe that for λ > 0
the function θ(x;λ) is increasing in x ∈ [0, 1] and thus θ∗ is non-decreasing.

We first show that θ∗ must strictly increase on every interval where it is finite. As-
sume therefore that θ∗(x2) <∞ for some x2 ∈ (0, 1]; we take an arbitrary x1 ∈ [0, x2)
and show that

θ∗(x2)− θ∗(x1) ≥ x2 − x1. (3.8)

Take δ > 0 such that θ∗(x2) − θ∗(x1) ≤ δ; then there exists K > 0 such that
θ(x2;λ)− θ(x1;λ) < 2δ for all λ > K. In view of (3.1), this yields the inequality

x2∫
x1

(u sin θ + cos θ)2 dx+ λ

x2∫
x1

sin2 θ dx < 2δ.

In particular, for such λ
x2∫
x1

sin2 θ dx <
2δ

λ
,
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so that
x2∫
x1

cos2 θ dx > x2 − x1 −
2δ

λ

and, due to the Cauchy-Bunyakovsky-Schwarz inequality,

x2∫
x1

∣∣u sin θ cos θ∣∣ dx ≤ ‖u‖L2

(2δ
λ

)1/2
.

It now follows that

θ(x2;λ)− θ(x1;λ) ≥
x2∫
x1

cos2 θ dx− 2

x2∫
x1

|u sin θ cos θ| dx >

> x2 − x1 −
2δ

λ
− 2‖u‖L2

(2δ
λ

)1/2
,

for all λ > K, thus yielding (3.8).
Next we prove that if θ∗(x0) ∈ (πn, π(n+1)) for some x0 ∈ (0, 1) and some n ∈ N,

then θ∗(x0 + 0) ≥ π(n+ 1) and θ∗(x0 − 0) ≤ πn. Indeed, for every sufficiently small
δ > 0 there exists K > 0 such that πn + δ ≤ θ(x0;λ) < π(n + 1) − δ for all λ > K.
Denote by

(
x−(λ), x+(λ)

)
the largest open interval in [0, 1] containing x0 such that

θ(x;λ) ∈ (πn+ δ;π(n+ 1)− δ)

for all x ∈
(
x−(λ), x+(λ)

)
. Then it follows from (3.1) that, for λ > K,

π − 2δ ≥ θ(x+(λ);λ)− θ(x−(λ);λ) ≥ λ(x+(λ)− x−(λ)) sin2 δ

and, as λ→ +∞,

x+(λ)− x−(λ) ≤
π − 2δ

λ sin2 δ
→ 0.

Thus x+(λ)→ x0 as λ→ +∞ and θ(x+(λ);λ) = π(n+ 1)− δ for all λ large enough.
Now for every ε > 0 we find that

θ∗(x0 + ε) = lim
λ→+∞

θ(x0 + ε, λ) ≥ lim
λ→+∞

θ(x+(λ);λ) = π(n+ 1)− δ;

as a result, θ∗(x0+0) ≥ π(n+1)−δ. Similar arguments show that θ∗(x0−0) ≤ πn+δ.
As δ > 0 was arbitrary, the claim follows.

Assume now that θ∗(x0) <∞ for some x0 ∈ (0, 1]. Combining the above two prop-
erties of the function θ∗, we see that θ∗(x2)− θ∗(x1) ≥ π whenever 0 < x1 < x2 ≤ x0.
This is impossible and thus θ∗(x) ≡ +∞ for all x ∈ (0, 1]. The proof of the theorem
is complete.
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4. STURM COMPARISON AND OSCILLATION THEOREMS

The Sturm comparison theorem for the singular Sturm-Liouville differential equa-
tion can easily be derived from the monotonicity of the Prüfer angle established in
Lemma 3.4.

Theorem 4.1. Assume that y(·;λj), j = 1, 2, are real-valued solutions of the equa-
tions τy = λjy and let λ1 < λ2. Then y(·;λ2) vanishes at least once between every
two zeros of y(·;λ1).

Proof. Let x0 < x1 be two successive zeros of y(·;λ1), and assume for the sake of
definiteness that y(x;λ1) > 0 for x ∈ (x0, x1). By Lemma 2.1, y[1](x0;λ1) > 0 and
y[1](x1;λ1) < 0, so that

y[1](x;λ1)

y(x;λ1)
→ +∞ as x→ x0+,

y[1](x;λ1)

y(x;λ1)
→ −∞ as x→ x1−.

We now fix the Prüfer angle θ(·, λ1) corresponding to the solution y(·;λ1) by the
condition θ(x0;λ1) = 0. Then θ(x;λ1) is positive for x > x0 by Corollary 3.1 and
does not take values πn, n ∈ Z, for x ∈ (x0, x1); therefore θ(x;λ1) ∈ (0, π) for all
x ∈ (x0, x1), and θ(x1, λ1) = π.

Let θ(·;λ2) be the Prüfer angle corresponding to the solution y(·;λ2) and fixed
by the condition θ(x0;λ2) ∈ [0, π). By Lemma 3.4, we have θ(x1;λ2) > θ(x1;λ1) = π
and thus there is x∗ ∈ (x0, x1) such that θ(x∗;λ2) = π. Then y(x∗;λ2) = 0, and the
proof is complete.

Consider now the Sturm-Liouville operator T generated in L2(0, 1) by the differ-
ential expression τ and the boundary conditions

sinα y[1](0)− cosα y(0) = sinβ y[1](1)− cosβ y(1) = 0

for some α ∈ [0, π) and β ∈ (0, π]. It is known [23,24] that the operator T is self-adjoint
and that its spectrum consists entirely of simple eigenvalues.

We denote by y(·;λ) the solution of the equation τy = λy normalized by the initial
conditions y(0) = sinα and y[1](0) = cosα, and let θ(·;λ) be the corresponding Prüfer
angle subject to the initial condition θ(0;λ) = α.

Lemma 4.2. The solution y(·;λ) has n zeros inside the interval (0, 1) if and only
if πn < θ(1;λ) ≤ π(n + 1). In particular, the number of interior zeros of y(·;λ) is
a non-decreasing function of λ.

Proof. The number of interior zeros of y(·;λ) is equal to the number of interior points
x, where θ(x;λ) = 0 mod π. Since θ(·;λ) increases through every such point by
Corollary 3.1, the lemma follows.
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It follows from the above lemma that the solution y(·;λ) has at least n interior
zeros for all λ > λ∗n, with λ∗n denoting the unique solution of the equation θ(1;λ) = πn.
If we denote the nth zero by xn, then xn becomes a function of λ ∈ (λ∗n,+∞). As in
the classical Sturm-Liouville theory, we conclude the following.

Lemma 4.3. xn is a continuous and strictly decreasing function of the variable
λ ∈ (λ∗n,+∞).

Proof. The properties of the Prüfer angle imply that θ(xn(λ);λ) = πn for all λ > λ∗n.
Since θ strictly increases in λ, for every λ1 and λ2 such that λ2 > λ1 > λ∗n the
inequality θ(xn(λ1), λ2) > θ(xn(λ1), λ1) = πn holds. As in Lemma 4.2, this implies
that y(x;λ2) has at least n zeros in (0, xn(λ1)), so that xn(λ2) < xn(λ1).

By (3.6), the Prüfer angle θ(·;λ) depends continuously on λ in the topology of
the space C[0, 1] and whence is a continuous function of x and λ. Take an arbitrary
λ∗ > λ∗n and set x∗ = xn(λ

∗); then by the simplest form of the implicit function
theorem, there exist a neighbourhood O of the point x∗ and a continuous function
λ(x) defined on O such that λ(x∗) = λ∗ and θ(x;λ(x)) = πn for all x ∈ O. In
view of Corollary 3.1 the function λ(x) strictly decreases in O, and thus there is a
neighbourhood O′ of λ∗ and a continuous function x(λ) that is inverse to λ(x). In
particular, θ(x(λ), λ) = πn for all λ ∈ O′. Therefore xn(λ) = x(λ) in O, and xn is
continuous in O and whence for all λ > λ∗n.

As in [21], one can prove the Sturm oscillation principle using the above mono-
tonicity of the zeros xn(λ). We give another proof based directly on the properties of
the Prüfer angle.

Theorem 4.4. The operator T is bounded below and its eigenvalues can be listed as

λ0 < λ1 < . . . < λn < λn+1 < . . .

with the only accumulation point at +∞. Denote by yn a real-valued eigenfunction
corresponding to λn; then yn has n interior zeros, which interlace the zeros of yn+1.

Proof. Clearly, a real λ is an eigenvalue of T if and only if θ(1;λ) = β mod π. We
observe that θ(1;λ) > 0 for all λ ∈ R and that θ(1;λ)→ 0 as λ→ −∞ by Theorem 3.5;
therefore, there is K > 0 such that θ(1;λ) 6= β mod π if λ < −K, which yields the
bound λ0 ≥ −K.

As λ increases from −∞ to +∞, θ(1;λ) strictly increases from 0 to +∞. Therefore
for every n ∈ Z+ there exists a unique λn such that θ(1;λn) = β + πn. In particular,
θ(1;λ0) = β ≤ π, and by Lemma 4.2 the eigenfunction y0 := y(·;λ0) corresponding
to the first eigenvalue λ0 has no interior zeros. Similarly, as θ(1;λn) ∈ (πn, πn +
π], the function θ(·;λn) has exactly n interior points xk, k = 1, . . . , n, at which
θ(xk, λn) = πk.

Further, by Theorem 4.1 each of the intervals (x1, x2), . . . , (xn−1, xn) contains at
least one zero of yn+1. By Lemma 3.4, θ(x1;λn+1) > θ(x1;λn) = π and thus θ(·, λn+1)
assumes the value π inside the interval (0, x1), i.e., yn+1 has a zero in (0, x1). Next we
observe that θ(1;λn) + π = θ(1;λn+1). Applying the “backward” part of Lemma 3.4
to the solutions θ(·;λn) + π and θ(·;λn+1) on the interval (xn, 1), we conclude that
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θ(xn;λn) + π > θ(xn;λn+1), i.e., θ(xn;λn+1) < π(n + 1). As θ(1;λn+1) > π(n + 1),
θ(·;λn+1) assumes the value π(n+ 1) at some point in the interval (xn, 1), and yn+1

vanishes at that point.
Finally, as yn+1 has exactly n+ 1 interior zeros, we see that each of the intervals

(0, x1), (x1, x2), . . . , (xn, 1) contains exactly one such zero, i.e., the zeros of yn and
yn+1 strictly interlace. The proof is complete.

Combining Theorem 3.5 and Lemma 4.2, we immediately get another form of the
Sturm oscillation principle, namely:

Corollary 4.5. Assume that β = π. Then the number of eigenvalues of T strictly
below λ is equal to the number of interior zeros of the solution y(·;λ).
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