Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Tunnel boring machines’ construction efficiency is significantly affected by the formation of joints. Indentation tests were performed to explore the influence of joints on rock fragmentation by double cutters on a gray sandstone. The process of rock fragmentation was captured by the digital image correlation method. Simulations based on the cohesive element with zero thickness were then conducted to simulate the failure process and evolution of jointed rock under the action of double cutters. A mechanical model is established to deduce the stress evolution in a rock mass by double disc cutters with different penetration depths. The action mechanism and mechanical influence of joints on rock fragmentation were determined. The results show that, under the action of double cutters, the rock with joints is more ready broken than the intact rock mass. The joint acts as a weak interface in the rock mass. Finally, the rock mass is destroyed along the vertical joint, forming rock slag with the joint as the boundary. When the joint dip angle is about 30°, the interaction force between the rock mass and the cutter is low, and the rock fragmentation efficiency is high. And the spacing of joints is also a key factor in the rock-breaking efficiency of double cutters.
Czasopismo
Rocznik
Tom
Strony
art. e222, 1--15
Opis fizyczny
Bibliogr. 26 poz., il., tab., wykr.
Twórcy
autor
- School of Mechanics and Civil Engineering, China University of Mining and Technology-Beijing, Beijing, China
autor
- School of Mechanics and Civil Engineering, China University of Mining and Technology-Beijing, Beijing, China
autor
- School of Mechanics and Civil Engineering, China University of Mining and Technology-Beijing, China
autor
autor
- China Railway Construction Heavy Industry Corporation Limited, Changsha, Hunan, China
autor
- School of Mechanics and Civil Engineering, China University of Mining and Technology-Beijing, Beijing, China
Bibliografia
- 1. Farrokh E, Rostami J, Laughton C. Study of various models for estimation of penetration rate of hard rock TBMs. Tunn Undergr Space Technol. 2012;30:110-23. https://doi.org/10. 1016/j.tust.2012.02.012.
- 2. Balci C. Correlation of rock cutting tests with field performance of a TBM in a highly fractured rock formation: A case study in Kozyatagi-Kadikoy metro tunnel Turkey. Tunn Undergr Space Technol. 2009;24:423-35
- 3. Teale R. The concept of specific energy in rock drilling. Int J Rock Mech Min Sci Geomech Abstr. 1965;2(1):57-73. https://doi.org/10.1016/0148-9062(65)90016-1.
- 4. Ozdemir L, Wang FD. Mechanical tunnel boring prediction and machine design. Nasa Stirecon Techn Rep N. 1979. https://doi. org/10.1016/0148-9062(78)91060-4.
- 5. Rostami J. Study of pressure distribution within the crushed zone in the contact area between rock and disc cutters. Int J Rock Mech Min Sci. 2013;57:172-86. https://doi.org/10.1016/j. ijrmms.2012.07.031.
- 6. Sanio HP. Prediction of the performance of disc cutters in anisotropic rock. Int J Rock Mech Min Sci Geomech Abstr. 1985;22(3):153-61. https://doi.org/10.1016/0148-9062(85)93229-2.
- 7. Gong QM, Zhao J. Development of a rock mass characteristics model for TBM penetration rate prediction. Int J Rock Mech Min Sci. 2009;46:8-18. https://doi.org/10.1016/j.ijrmms.2008.03.003.
- 8. Ma HS, Yin LJ, Gong QM, et al. Experimental study on the effect of joint spacing on fragmentation modes and penetration rate under TBM disc cutters. Appl Mech Mater. 2013;353-356:890-4. https://doi.org/10.4028/www.scientific.net/AMM.353-356.890.
- 9. Yang HQ, Liu JF, Liu BL. Investigation on the cracking character of jointed rock mass beneath TBM disc cutter. Rock Mech Rock Eng. 2018;51:1263-77. https://doi.org/10.1007/ s00603-017-1395-8.
- 10. Cho JW, Jeon S, Jeong HY, et al. Evaluation of cutting efficiency during TBM disc cutter excavation within a Korean granitic rock using linear-cutting-machine testing and photogrammetric measurement. Tunn Undergr Space Technol. 2013;35:37-54. https://doi.org/10.1016/j.tust.2012.08.006.
- 11. Chiaia B. Fracture mechanisms induced in a brittle material by a hard cutting indenter. Int J Solids Struct. 2001;38:7747-68. https://doi.org/10.1016/S0020-7683(01)00117-2.
- 12. Jiang MM, Liao YB, Wang HN, et al. Distinct element method analysis of jointed rock fragmentation induced by TBM cutting. Eur J Environ Civil Eng. 2018;22(S1):79-98. https://doi.org/10.1080/19648189.2017.1385540.
- 13. Labra C, Rojek J, Oate E. Discrete/finite element modelling of rock cutting with a TBM disc cutter. Rock Mech Rock Eng. 2017;50(3):621-38. https://doi.org/10.1007/s00603-016-1133-7.
- 14. Xue YD, Zhou J, Liu C, et al. Rock fragmentation induced by a TBM disccutter considering the effects of joints: a numerical simulation by DEM. Comput Geotech. 2021;136:1230. https://doi.org/10.1016/j.compgeo.2021.104230.
- 15. Choi SO, Lee SJ. Numerical study to estimate the cutting power on a disc cutter in jointed rock mass. KSCE J Civ Eng. 2016;20(1):440–51. https://doi.org/10.1007/s12205-015-2265-0.
- 16. Bejari H, Kakaie R, Ataei M, et al. Simultaneous effects of joint spacing and joint orientation on the penetration rate of a single disc cutter. Min Sci Technol (China). 2011;21:507-12. https://doi.org/10.1016/j.mstc.2011.06.008.
- 17. Zhai SF, Zhou XP, Bi J, et al. The effects of joints on rock fragmentation by TBM cutters using general particle dynamics. Tunn Undergr Space Technol. 2016;57:162-72. https://doi.org/10.1016/j.tust.2016.01.035.
- 18. Kou SQ, Lindqvist P-A, Tang CA, et al. Numerical simulation of the cutting of inhomogeneous rocks. Int J Rock Mech Min Sci. 1999;36:711-7.
- 19. Fan LF, Wu ZJ, Wan Z, et al. Experimental investigation of thermal effects on dynamic behavior of granite. Appl Therm Eng. 2017;125:94-103. https://doi.org/10.1016/j.applthermaleng.2017.07.007.
- 20. Ding CX, Yang RS, Feng C. Stress wave superposition effect and crack initiation mechanism between two adjacent boreholes. Int J Rock Mech Min Sci. 2021;138:104622. https://doi.org/10.1016/j. ijrmms.2021.104622.
- 21. Wu ZJ, Fan LF, Liu QS, et al. Micro-mechanical modeling of the macro-mechanical response and fracture behavior of rock using the numerical manifold method. Eng Geol. 2017;225:49-60. https://doi.org/10.1016/j.enggeo.2016.08.018.
- 22. Liu S, Li JY. Application of epoxy resin adhesive in bonding of new and old road concrete. China Adhes. 2021;30(11):41-5. https://doi.org/10.13416/j.ca.2021.11.009.
- 23. Xu B, Li YL, Wang SS, et al. Study on the strength characteristics and failure characteristics of the composite load-bearing structure in the cemented filling field. Constr Build Mater. 2022;330:127242.
- 24. Cao P, Lin QB, Li KH, et al. Effects of joint angle and joint space on rock fragmentation efficiency by two TBM disc cutters. J Central South Univ (Sci Technol). 2017;48(5):1293-9. https://doi.org/10.11817/j.issn.1672-7207.2017.05.023.
- 25. Chen CF, X, T., Li, S.H. Micro-crack evolution and associated deformation and strength properties of sandstone samples subjected to various strain rates. Minerals. 2018;8(6):231. https://doi.org/10.3390/min8060231.
- 26. Goodman RE. Introduction to rock mechanics. New York: John Willey and Sons Inc.; 1989. p. 358-61.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f64772f4-e04c-4e78-9d3b-9c4bab9512dc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.