PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Development of Mask Design Knowledge Base Based on Sensory Evaluation and Fuzzy Logic

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article focuses on the development of the mask design knowledge base, which is expected to be applied in a personalized mask design system. To realize the proposed knowledge base, a perceptual descriptive space of the mask is first developed for the description of both functional and aesthetic perceptions of a mask. The mask ontology is also developed to form the mask element matrix. Mask design knowledge is expressed as the relationship between the perceptual descriptive space and the mask ontology, which is extracted by a group of experienced designers through a sensory evaluation procedure. This relationship is then simulated by fuzzy logic tools. The proposed knowledge base has been validated that it is reliable. The personalized mask design system can be further developed with the propose mask design knowledge base.
Słowa kluczowe
Rocznik
Strony
224--230
Opis fizyczny
Bibliogr. 11 poz.
Twórcy
autor
  • College of Textile and Clothing Engineering, Soochow University
autor
  • College of Textile and Clothing Engineering, Soochow University
autor
  • College of Textile and Clothing Engineering, Soochow University
autor
  • College of Textile and Clothing Engineering, Soochow University
Bibliografia
  • [1] Hong, Y., Chen, Y., Cao, X., Zeng, X. (2018). Framework of consumer perceived value on fashion products for female college students in France. Industria Textila, 69, 495–501.
  • [2] Hong, Y., Bruniaux, P., Curteza, A., Liu, K., Zeng, X., et al. (2018). Visual-simulation-based personalized garment block design method for physically disabled people with scoliosis (PDPS). Autex Research Journal,18, 35–45.
  • [3] Hong, Y., Zeng, X., Wang, Y., Bruniaux, P., Chen, Y. (2018). CBCRS: An open case-based color recommendation system. Knowledge-Based Systems, 141, 113–128.
  • [4] Zhang, J. J., Liu, K., Dong, M., Zeng, X., Hong, Y. (2018). Jeans knowledge base development based on sensory evaluation technology for customers’ personalized recommendation. Emerald Insight, 30, 101–111.
  • [5] Pu, L. Z., Wagner, M., Abteu, M., Hong, Y., Wang, P. (2018). Raincoat design for children for age group 7–8 years: A design development case study. Industria Textile, 69, 394–399.
  • [6] Xue, Z., Zenga, X., Koehla, L., Chenb, Y. (2014). Measuring consistency of two datasets using fuzzy techniques and the concept of indiscernibility: Application to human perceptions on fabrics. Engineering Applications of Artificial Intelligence, 36, 54–63.
  • [7] Chen, X., Zeng, X., Boulenguez-Phippen, J., Tao, X., Koehi, L. (2015). Control and optimization of human perception on virtual garment products by learning from experimental data. Knowledge-Based Systems, 87, 92–101.
  • [8] Zhu, Y., Zeng, X., Koehl, L., Lageat, T., Charbonneau, A., et al. (2010). A general methodology for analyzing fashion oriented textile products using sensory evaluation. Food Quality and Preference, 21, 1068–1076.
  • [9] Xue, Z., Zeng, X., Koehl, L., Shen, L. (2016). Interpretation of fabric tactile perceptions through visual features for textile products. Journal of Sensory Studies, 31, 143–162.
  • [10] Hong, Y., Bruniaux, P., Zeng, X., Curteza, A., Liu, K. (2017). Design and evaluation of personalized garment block design method for atypical morphology using the knowledge supported virtual simulation method. Textile Research Journal, 88, 1721–1734.
  • [11] Hong, Y., Zeng, X., Bruniaux, P., Chen, Y., Zhang, X. (2017). Development of a new knowledge-based fabric recommendation system by integrating the collaborative design process and multi-criteria decision support. Textile Research Journal, 88, 2682–2698.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f63d468b-6b1a-4078-97ec-661d5c3c1303
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.