Identyfikatory
Warianty tytułu
Dylematy poprawnego szacowania długości kolejek pojazdów w analizach przepustowości skrzyżowań
Języki publikacji
Abstrakty
Residual queues are one of fundamental traffic quantities indicating the traffic performance of signalized road intersections. Intersection queues indicate traffic congestion, i.e., traffic jams building up on the road system. Accurate queue length estimation is an essential part of road intersection and system performance assessments and the associated decision-making process. This is particularly important in the geometric design of intersections and in arterial congestion analyses. The analyses and comparisons presented in this article relate mainly to the new Polish guidelines for performing road traffic measurements (WR-D-12). Alternative ways of estimating queues were also checked in terms of their estimation accuracy. The first part of article gives a review of the literature on the traffic queue estimation methods. Then, own research results were characterized to show the complexity of the issue of residual queues at signalized intersections. Further on, different vehicle queue estimation approaches are analyzed, including the guidance provided in WR-D-12. A comparative analysis of empirical data obtained on a few intersections was conducted at this point of our study. The final part of this article includes the authors’ conclusions and recommendations for correct estimation and accurate determination of residual vehicles number for traffic capacity analyses.
Kolejki pozostające są jedną z podstawowych wielkości miar warunków ruchu drogowych skrzyżowań wyposażonych w sygnalizację świetlną. Kolejki te parametryzują stan zatoru drogowego, tzn. świadczą o przeciążeniu ruchowym. Dokładne oszacowanie długości kolejki jest istotną częścią oceny wydajności tych skrzyżowań oraz układu drogowego oraz podejmowanych kierunków usprawnień podejmowanych na ich podstawie. Jest to szczególnie ważne w projektowaniu geometrycznym skrzyżowań oraz w analizach zatłoczenia arterii. Przedstawione w artykule analizy i porównania odnoszą się głównie do nowych polskich wytycznych wykonywania pomiarów ruchu drogowego (WR-D-12), odnoszących się m.in. do badań kolejek na skrzyżowaniach z sygnalizacją świetlną. Sprawdzono również alternatywne sposoby szacowania kolejek pod kątem ich dokładności. Pierwsza część artykułu zawiera przegląd literatury dotyczącej metod estymacji kolejek. Następnie scharakteryzowano wyniki badań własnych, aby pokazać złożoność zagadnienia kolejek pozostających, formujących się na skrzyżowaniach z sygnalizacją świetlną. W dalszej części przeanalizowano różne sposoby określania tych kolejek pojazdów, w tym zawarte w WR-D-12. Na tym etapie przeprowadzono analizę porównawczą danych empirycznych uzyskanych z kilku skrzyżowań. Ostatnia część artykułu zawiera wnioski i zalecenia autorów dotyczące prawidłowego szacowania oraz dokładnego określania długości kolejek pozostających na potrzeby analiz przepustowości.
Czasopismo
Rocznik
Tom
Strony
523--541
Opis fizyczny
Bibliogr. 65 poz., il., tab.
Twórcy
autor
- Bydgoszcz University of Science and Technology, Faculty of Civil and Environmental Engineering and Architecture, Bydgoszcz, Poland
autor
- Cracow University of Technology, Faculty of Civil Engineering, Kraków, Poland
Bibliografia
- [1] R. Akçelik, Traffic Signals: capacity and timing analysis. Research Report ARR No. 123 (7th reprint). Australian Road Research Board, 1998.
- [2] A Policy on Geometric Design of Highways and Streets, 6th ed. Washington: American Association of State Highway and Transportation Officials, 2011.
- [3] S. Gaca, W. Suchorzewski, and M. Tracz, Inżynieria ruchu drogowego. Teoria i praktyka.Warszawa: Wydawnictwa Komunikacji i Łączności, 2008.
- [4] D. L. Gerlough and M. J. Huber, Traffic flow theory. Special Report 165. Washington: Transportation Research Broad, 1975.
- [5] N. Rouphail, A. Tarko, and J. Li, “Traffic flow at signalized intersections”, in Revised Monograph on Traffic Flow Theory. Federal Highway Administration, USA, 1992.
- [6] S. Gaca, T. Sandecki, and K. Jamroz, “Aspekty bezpieczenstwa ruchu w przepisach techniczno-budowlanych dotyczących infrastruktury drogowej”, Drogownictwo, no. 12, pp. 331-338, 2020.
- [7] Rozporządzenie Ministra Infrastruktury z dnia 24 czerwca 2022 r. w sprawie przepisów techniczno-budowlanych dotyczących dróg publicznych (Dz.U.2022.1518).
- [8] P. Góralski, J. Jakiel, M. Szpórnóg, Sz. Ściga, B. Wiertel, and M. Żuławiński, Wytyczne wykonywania pomiarów ruchu drogowego. WR-D-1: Wzorce i Standardy rekomendowane przez Ministra właściwego ds. transportu, (wersja 01-02.12.2022). Ministerstwo Infrastruktury, Polska, 2022.
- [9] D. Iwanowicz, “Assessment of selected methods of estimating the maximum back-of-queue size on a signal-controlled intersection approach”, Journal of Civil Engineering and Transport, vol. 4, no. 2, pp. 49-63, 2022, doi: 10.24136/tren.2022.008.
- [10] E. Macioszek and D. Iwanowicz, “A Back-of-Queue Model of a Signal-Controlled Intersection Approach Developed Based on Analysis of Vehicle Driver Behavior”, Energies, vol. 14, no. 4, art. no. 1204, 2021, doi: 10.3390/en14041204.
- [11] K. Ostrowski and M. Tracz, “Availability and reliability of a signalized lane”, Transportmetrica B: Transport Dynamics, vol. 7, no. 1, pp. 1044-1061, 2019, doi: 10.1080/21680566.2018.1547229.
- [12] J. Chodur, K. Ostrowski, and M. Tracz, “Impact of Saturation Flow Changes on Performance of Traffic Lanes at Signalised Intersections”, Procedia - Social and Behavioral Sciences, vol. 16, pp. 600-611, 2011, doi: 10.1016/j.sbspro.2011.04.480.
- [13] T. Szczuraszek and D. Iwanowicz, “The analysis of calculation methods of vehicle queue lengths in front of intersection inlets with traffic lights”, Logistyka – Nauka, no. 4, pp. 1523-1534, 2015.
- [14] G. Comert and M. Cetin, “Queue length estimation from connected vehicles with range measurement sensors at traffic signals”, Applied Mathematical Modelling, vol. 99, pp. 418-434 2021, doi: 10.1016/j.apm.2021.07.003.
- [15] Q. Luo, J. Yuan, X. Chen, S. Wu, Z. Qu, and J. Tang, “Analyzing start-up time headway distribution characteristics at signalized intersections”, Physica A: Statistical Mechanics and its Applications, vol. 535, 2019, doi: 10.1016/j.physa.2019.122348.
- [16] D. Parmar, N. Gore, D. Rathva, S. Dave, and M. Jain, “Modelling Queuing of Vehicles at Signalized Intersection”, in: Transportation Research. Lecture Notes in Civil Engineering, vol. 45, T. Mathew, G. Joshi, N. Velaga, and S. Arkatkar Eds. Springer, 2020, pp. 557-565, doi: 10.1007/978-981-32-9042-6_44.
- [17] G. Zhang and J. Chen, “Study on Saturation Flow Rates for Signalized Intersections”, in 2009 International Conference on Measuring Technology and Mechatronics Automation. Zhangjiajie, China, 2009, pp. 598-601, doi: 10.1109/ICMTMA.2009.451.
- [18] J. Jathender and A. Mehar, “Estimation of Queue Length at Signalized Intersection under Non-Lane Based Traffic Conditions”, Periodica Polytechnica Transportation Engineering, vol. 51, no. 1, pp. 31-39, 2023, doi: 10.3311/PPtr.17454.
- [19] S. Lee, S.C. Wong, and Y.C. Li, “Real-time estimation of lane-based queue lengths at isolated signalized junctions”, Transportation Research Part C: Emerging Technologies, vol. 56, pp. 1-17, 2015, doi: 10.1016/j.trc.2015.03.019.
- [20] H.X. Liu, H. Wu, W. Ma, and H. Hu, “Real-time queue length estimation for congested signalized intersections”. Transportation Research Part C: Emerging Technologies. vol. 17, pp. 412-427, 2009, doi: 10.1016/j.trc.2009.02.003.
- [21] Y. Mao, W. Wang, C. Ding, W. Guo, X. Jiang, M. Baumann, and G. Wets, “A measurement to driving situation awareness in signalized intersections”, Transportation Research Part D: Transport and Environment, vol. 62, pp. 739-747, 2018, doi: 10.1016/j.trd.2018.05.001.
- [22] T. Szczuraszek and D. Iwanowicz, “The Impact of the Analysis Period on the Estimation Accuracy of Queue Lengths at Intersection Inlets with Traffic Lights”, in: Recent Advances in Traffic Engineering for Transport Networks and Systems, E. Macioszek and G. Sierpiński Eds. Springer International Publishing, 2018, pp. 181-192, doi: 10.1007/978-3-319-64084-6_17.
- [23] T. Chaopeng, Y. Jiarong, T. Keshuang, and S. Jian, “Cycle-Based Queue Length Estimation for Signalized Intersections Using Sparse Vehicle Trajectory Data”, IEEE Transactions on Intelligent Transportation Systems, vol. 22, no. 1, pp. 91-106, 2021, doi: 10.1109/TITS.2019.2954937.
- [24] T. Chaopeng, Y. Jiarong, B. Xuegang, and T. Keshuang, “Cumulative Flow Diagram Estimation and Prediction Based on Sampled Vehicle Trajectories at Signalized Intersections”, IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 8, pp. 11325-11337, 2022, doi: 10.1109/TITS.2021.3102750.
- [25] Q. Cheng, Z. Liu, J. Guo, X. Wu, R. Pendyla, B. Belezamo, and X.S. Zhou, “Estimating key traffic state parameters through parsimonious spatial queue models”, Transportation Research Part C: Emerging Technologies. vol. 137, 2022, doi: 10.1016/j.trc.2022.103596.
- [26] M. Fathy, and M. Y. Siyal, “Real-time image processing approach to measure traffic queue parameters”, IEE Proceedings - Vision, Image and Signal Processing, vol. 142, no. 5, pp. 297-303, 1995, doi: 10.1049/ipvis: 19952064.
- [27] Y. Jiarong, L. Fuliang, T. Keshuang, and J. Sun, “Sampled Trajectory Data-Driven Method of Cycle-Based Volume Estimation for Signalized Intersections by Hybridizing Shockwave Theory and Probability Distribution”, IEEE Transactions on Intelligent Transportation Systems, vol. 21, no. 6, pp. 2615-2627, 2020, doi: 10.1109/TITS.2019.2921478.
- [28] Q.W. Li, H. Li, and G. Huo, “A Single-frame Based Approach to Measure Traffic Queue Length”, Advanced Materials Research, vol. 468-471, pp. 213-216, 2012, doi: 10.4028/www.scientific.net/AMR.468-471.213.
- [29] W.A. Okaishi, A. Zaarane, I. Slimani, I. Atouf, and M. Benrabh, “A Vehicular Queue Length Measurement System in Real-Time Based on SSD Network”, Transport and Telecommunication, vol. 22, no. 1, pp. 29-38, 2021, doi: 10.2478/ttj-2021-0003.
- [30] Q. Zhan, L. Maojun, L. Chongpei, Z. Miao, and L. Manyi, “A Measurement Method for Vehicle Queue Length of Intersection Based on Image Processing”, in 2018 Eighth International Conference on Image Processing Theory, Tools and Applications (IPTA). Xi’an, China, 2018, pp. 1-6, doi: 10.1109/IPTA.2018.8608140.
- [31] E.I. Vlahogianni, C.L. Webber Jr., N. Geroliminis, and A. Skabardonis, “Statistical characteristics of transitional queue conditions in signalized arterials”, Transportation Research Part C: Emerging Technologies, vol. 15, no. 6, pp. 392-403, 2007, doi: 10.1016/j.trc.2007.07.003.
- [32] L. Yunteng, Y. Xiaoguang, and W. Zhen, “Quantification of Congestion in Signalized Intersection Based on Loop Detector Data”, in 2007 IEEE Intelligent Transportation Systems Conference. Bellevue, WA, USA, 2007, pp. 904-909, doi: 10.1109/ITSC.2007.4357736.
- [33] J. Zheng, X. Ma, Y.J. Wu, and Y. Wang, “Measuring signalized intersection performance in real-time with traffic sensors”, Journal of Intelligent Transportation Systems: Technology, Planning, and Operations, vol. 17, no. 4, pp. 304-316, 2013, doi: 10.1080/15472450.2013.771105.
- [34] L. Haijian, C. Na, Q. Linggiao, J. Limin, and R. Jian, “Queue length estimation at signalized intersections based on magnetic sensors by different layout strategies”, Transportation Research Procedia, vol. 25, pp. 1626-1644, 2017, doi: 10.1016/j.trpro.2017.05.212.
- [35] W. Zhengi, Z. Liyun, R. Bin, and J. Hai, “Queue profile estimation at a signalized intersection by exploiting the spatiotemporal propagation of shockwaves”, Transportation Research Part B: Methodological, vol. 141, pp. 59-71, 2020, doi: 10.1016/j.trb.2020.08.009.
- [36] W. Zhongyu, C. Qing, W. Bing, Z. Lingyu, and W. Yinhai, “Shockwave-based queue estimation approach for undersaturated and oversaturated signalized intersections using multi-source detection data”, Journal of Intelligent Transportation Systems, vol. 21, no. 3, pp. 167-178, 2017, doi: 10.1080/15472450.2016.1254046.
- [37] Q. Chen, M. Li, C.Wang, X. Liu, and J. Tang, “Cycle-Based Estimation on Lane-Level Queue Length at Isolated Signalized Intersection Using License Plate Recognition Data”, Journal of Transportation Engineering Part A: Systems, vol. 149, no. 1, 2022, doi: 10.1061/JTEPBS.0000781.
- [38] M.S. Ghanim, K. Shaaban, and S. Allawi, “Operational Performance of Signalized Intersections: HCM and Microsimulation Comparison”, in 2022 Intermountain Engineering, Technology and Computing (IETC). Orem, UT, USA, 2022, pp. 1-6, doi: 10.1109/ietc54973.2022.9796675.
- [39] P. Hao, X.J. Ban, and J.W. Yu, “Kinematic Equation-Based Vehicle Queue Location Estimation Method for Signalized Intersections Using Mobile Sensor Data”, Journal of Intelligent Transportation Systems, vol. 19, no. 3, pp. 256-272, 2015, doi: 10.1080/15472450.2013.857197.
- [40] M.T. Horvath and T. Tettamanti, “Real-time Queue Length Estimation Applying Shockwave Theory at Urban Signalized Intersections”, Periodica Polytechnica – Civil Engineering, vol. 65, no. 4, pp. 1153-1161, 2021, doi: 10.3311/PPci.17022.
- [41] Y. Li, D.P. Zhao, X.Q. Tai, and Z.L. Liu, “The queue length estimation for congested signalized intersections based on shockwave theory”, Advances in Intelligent Systems Research, vol. 31, pp. 548-551, 2013, doi: 10.2991/rsete.2013.133.
- [42] A.M. Philipma and G. Ramadurai, “Analytical Model for Queue Length Estimation at Signalized Intersections from Travel Time”, in 2019 IEEE Intelligent Transportation Systems Conference (ITSC). Auckland, New Zealand, 2019, pp. 4216-4221, doi: 10.1109/ITSC.2019.8917124.
- [43] M. Ramezani and N. Geroliminis, “Exploiting probe data to estimate the queue profile in urban networks”, in IEEE Conference on Intelligent Transportation Systems (ITSC 2013). The Hague, Netherlands, 2013, pp. 1817-1822, doi: 10.1109/ITSC.2013.6728492.
- [44] L. Wei, J.H. Li, L.W. Xu, L. Gao, and J. Yang, “Queue Length Estimation for Signalized Intersections under Partially Connected Vehicle Environment”, Journal of Advanced Transportation, vol. 2022, art. no. 9568723, 2022, doi: 10.1155/2022/9568723.
- [45] F. V. Webster, “Traffic Signal Settings”, in Road Research Technical paper No 39. London: Department of Scientific and Industrial Research, 1958.
- [46] R. Akçelik, “Time-depent expressions for delay, stops rate and queue length at traffic signals”, in Internal Report AIR 367-1. Australian Road Research Board, 1980.
- [47] A.J. Miller, “Settings for fixed-cycle traffic signals”, Operactions Research Quatery, vol. 14, no. 4, pp. 373-386, 1963, doi: 10.2307/3006800.
- [48] Guide to Traffic Management (Part 2 & 3). Sidney, Australia: Austroads, 2020.
- [49] Canadian Capacity Guide for Signalized Intersections, 3rd. ed. Ottawa: The Institute of Transportation Engineers. District 7, 2008.
- [50] Handbuch für die Bemessung von Straßenverkehrsanlagen (HBS 2015). Köln: Forschungsgesellschaft für Straßen- und Verkehrswesen e. V., 2015.
- [51] Handbuch fü’ur die Bemessung von Straßenverkehrsanlagen (HBS). Köln: Forschungsgesellschaft für Straßenund Verkehrswesen e. V., 2001.
- [52] High Capacity Manual 2000 (HCM 2000). Washington, DC, USA: Transportation Research Board, 2000.
- [53] High Capacity Manual, Sixth Edition: A Guide for Multimodal Mobility Analysis (HCM 2016). Washington, DC, USA: Transportation Research Board, 2016.
- [54] M. Tracz, J. Chodur, S. Gaca, S. Gondek, M. Kieć, and K. Ostrowski, Metoda obliczania przepustowości skrzyżowań z sygnalizacją świetlną. Warszawa: Generalna Dyrekcja Dróg Krajowych i Autostrad, 2004.
- [55] R.M. Kimber and E.M. Hollis, Traffic queues and delays at road junctions. Wokingham, Berkshire, United Kingdom: Transport and Road Research Laboratory, 1979.
- [56] N. Wu, “Estimation of queue lengths and their percentiles at signalized intersections”, in Proceedings of the Third International Symposium on Algorithmic Number Theory. London: Springer-Verlag, 1998, pp. 1117-1136.
- [57] M. Tracz, A. Tarko, and J. Chodur, Przepustowość skrzyżowań z sygnalizacją świetlną. Warszawa: Instytut Gospodarki Przestrzennej i Komunalnej, 1992.
- [58] D. Iwanowicz and J. Chmielewski, “Analysis of the Methods of Traffic Evaluation at the Approaches of Urban Signalised Intersections”, in Nodes in Transport Networks - Research, Data Analysis and Modelling, E. Macioszek, N. Kang, and G. Sierpiński Eds. Springer International Publishing, 2020, pp. 180-198, doi: 10.1007/978-3-030-39109-6_14.
- [59] R. Bayani, A.F. Soofi, M. Waseem, and S.D. Manshadi, “Impact of Transportation Electrification on the Electricity Grid - A Review”, Vehicles, vol. 4, no. 4, pp. 1042-1079, doi: 10.3390/vehicles4040056.
- [60] M. Hałucha, J. Bohatkiewicz, and P. Mioduszewski, “Modeling the effect of electric vehicles on noise levels in the vicinity of rural road sections”, Archives of Civil Engineering, vol. 69, no. 3, pp. 573-586, 2023, doi: 10.24425/ace.2023.146098.
- [61] J. Morgan, “Electric vehicles: the future we made and the problem of unmaking it”, Cambridge Journal of Economics, vol. 44, no. 4, pp. 953-977, 2020, doi: 10.1093/cje/beaa022.
- [62] J. Chodur and K. Ostrowski, “Assessment of Traffic Conditions at Signalised Intersections”, Archives of Transport, vol. 18, no. 2, pp. 5-24, 2006.
- [63] J. Chodur and K. Ostrowski, “Speed models at entries to signalised rural intersections”, in 5th International Conference on Road and Rail Infrastructures – CETRA 2018, 17-19 May 2018, Zadar, Croatia, S. Lakušic Eds. University of Zagreb, Croatia, 2018, pp. 1137-1143, doi: 10.5592/CO/cetra.2018.890.
- [64] J. Chodur, Funkcjonowanie skrzyżowań drogowych w warunkach zmienności ruchu. Politechnika Krakowska, Seria Inżynieria Lądowa, Monografia 347. Kraków, 2007.
- [65] D. Iwanowicz, „Model procesu powstawania i zmienności długości kolejki pojazdów na wlotach skrzyżowań z sygnalizacją świetlną”, PhD. Thesis, Uniwersytet Technologiczno-Przyrodniczy im. Jana i Jędrzeja Śniadeckich w Bydgoszczy, Polska, 2018.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f63c8dbf-6089-4596-968c-65e0d1e56fa1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.