PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Porous poly(lactic acid) based fibres as drug carriers in active dressings

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The polymeric porous surface of fibres (PLA) may influence the kinetics of release of biologically active compounds (gentamicin, G and ethacridine lactate, R) affecting development of a bacterial biofilm. Methods: The porous fibres with different morphology were manufactured by the electrospinning method from ternary systems composed of PLA and selected solvents. Fibres morphology was examined using a scanning electron microscopy (SEM), their structure was analyzed by FT-IR ATR spectroscopy and differential scanning calorimetry (DSC). Changes in the drug release profile were measured using ICP/UV-Vis methods and the resulting bactericidal or bacteriostatic properties were tested by two-layer disk diffusion test in relation to various drug incorporation methods. Results: The porous fibres can be applied to produce drug-bearing membranes. The spectroscopic studies confirmed incorporation of gentamicin into the fibres and the presence of ethacridine lactate on their surface. Bimodal fibres distribution (P3) promoted faster release of gentamicin and ethacridine lactate from P3G and P3R materials. The electrospinning process coupled with the vapor induced phase separation influenced the glass transition temperature of the porous polymer fibres. The pre/post-electrospinning modification influenced the glass transition, maximum temperature of cold crystallization and melting point of the porous membrane, compared to the neat polymer. The polylactide fibres with gentamicin showed strong bactericidal effect on Gram-positive bacteria, while fibres with ethacridine lactate were bacteriostatic. Conclusions: The obtained fibres with complex surface morphology can be used as a membrane in active dressings as they make it possible to control the release profile of the active compounds.
Rocznik
Strony
185--197
Opis fizyczny
Bibliogr. 30 poz., il., tab., wykr.
Twórcy
  • AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Kraków, Poland
  • Academy of Physical Education, Department of Physiotherapy, Section of Cosmetology, Kraków, Poland
  • International Centre of Electron Microscopy for Material Science, AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Kraków, Poland
  • Jagiellonian University Medical College, Department of Microbiology, Kraków, Poland
  • Jagiellonian University, Faculty of Biology, Institute of Zoology and Biomedical Research, Kraków, Poland
  • AGH University of Science and Technology, Faculty of Materials Science and Ceramics, ul. A. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
  • [1] AMBEKAR R.S., KANDASUBRAMANIAN B., Advancements in nanofibers for wound dressing: A review, European Polymer Journal, 2019, 117, 304–336.
  • [2] Antibiotic Solubility Data Table TOKU-e, https://www.tokue.com/Antibiotic-Solubility-Data-Table.aspx
  • [3] ARMENTANO I., ARCIOLA C.R., FORTUNATI E., FERRARI D., MATTIOLI S., RIZZO J., The interaction of bacteria with engineered nanostructured polymeric materials: a review, The Scientific World Journal, 2014, 18.
  • [4] ARONSON J.K. (ed.), Gentamicin. in: Meyler’s side effects of drugs, (Sixteenth ed.), Elsevier, Oxford, 2016, 530–538.
  • [5] CHANGHUA CHEN, YUMIN CHEN, PINPIN WU, BAOYUAN CHEN, Update on new medicinal applications of gentamicin: Evidence-based review, Journal of the Formosan Medical Association, 2014, (1 2), 72–82.
  • [6] CHOUHAN D., DEY N., BHARDWAJ N., MANDAL B.B., Emerging and innovative approaches for wound healing and skin regeneration: Current status and advances, Biomaterials, 2019, 216, 119–267.
  • [7] DIAS J.R., GRANJA P.L., BÁRTOLO P.J., Advances in electrospun skin substitutes, Progress in Materials Science, 2016, 1, 84, 314–334.
  • [8] Ethacridine lactate, PubChem https://pubchem.ncbi.nlm.nih.gov/compound/15789
  • [9] GOERTZ O., HIRSCH T., RING A., STEINAU H.U., DAIGELER A., LEHNHARDT M., HOMANN H.H., Influence of topically applied antimicrobial agents on muscular microcirculation, Ann. Plast. Surg., 2011, 67 (4), 407–412
  • [10] GRISTINA A.G., Biomaterial-centered infection: microbial adhesion versus tissue integration, Science, 1987, 25, 237 (4822), 1588–1595.
  • [11] HUANG C., THOMAS N.L., Fabricating porous poly(lactic acid) fibres via electrospinning, European Polymer Journal, 2018, 99, 464–476.
  • [12] JUNKA A., BARTOSZEWICZ M., SMUTNICKA D., SECEWICZ A., SZYMCZYK P., Efficacy of antiseptics containing povidoneiodine, octenidine di-hydrochloride and ethacridine lactate against biofilm formed by Pseudomonas aeruginosaand Sta phylococcus aureus measured with the novel biofilm-oriented antiseptics test, Int. Wound J. 2014, 11, 730–734.
  • [13] KOTLARZ M., RAINER J., WEGENER E., DOBRZYŃSKI P., NEUNZEHN J., LEDERER A., WOLF-BRANDSTETTER C., PAMULA E., SCHARNWEBER D., One step 3D printing of surface functionalized composite scaffolds for tissue engineering applications, Acta Bioeng. Biomech., 2018, 20 (2), 35–45.
  • [14] LI Y., LIM C.T., KOTAKI M., Study on structural and mechanical properties of porous PLA nanofibers electrospun by channelbased electrospinning system, Polymer., 2015, 56, 572–580.
  • [15] LUAN Y., LIU S., PIHL M., MEI H.C. VAN DER, LIU J., HIZAL F., Bacterial interactions with nanostructured surfaces, Current Opinion in Colloid & Interface Science. 2018, 38, 170–189.
  • [16] LUO C.J., NANGREJO M., EDIRISINGHE M., A novel method of selecting solvents for polymer electrospinning, Polymer, 2010, 51, 1654–1662.
  • [17] MIGUEL S.P., FIGUEIRA D.R., SIMÕES D., RIBEIRO M.P., COUTINHO P., FERREIRA P., Electrospun polymeric nanofibres as wound dressings: A review, Colloids and Surfaces B: Biointerfaces, 2018, 169, 60–71.
  • [18] QI Z., YU H., CHEN Y., ZHU M., Highly porous fibers prepared by electrospinning a ternary system of nonsolvent/solvent/poly(l-lactic acid), Materials Letters. 2009, 63 (3), 415–418.
  • [19] OIE S., KAMIYA A., Bacterial contamination of commercially available ethacridine lactate (acrinol) products, Journal of Hospital Infection, 1996, 1, 34 (1), 51–58.
  • [20] OIE S., KAMIYA A., Particulate and microbial contamination in in-use admixed parenteral nutrition solutions, Biological and Pharmaceutical Bulletin, 2005, 28 (12), 2268–2270.
  • [21] PARK J.-Y., LEE I.-H., Controlled release of ketoprofen from electrospun porous polylactic acid (PLA) nanofibers, J. Polym. Res., 2011, 1, 18(6), 1287–1291.
  • [22] PHAECHAMUD T., ISSARAYUNGYUEN P., PICHAYAKORN W., Gentamicin sulfate-loaded porous natural rubber films for wound dressing, International Journal of Biological Macromolecules, 2016, 1, 85, 634–644.
  • [23] RIBEIRO C., SENCADAS V., COSTA C.M., RIBELLES J., LANCEROS-MÉNDEZ S., Tailoring the morphology and crystallinity of poly(Llactide acid) electrospun membranes, Sci. Technol. Adv. Mater, 2011, 12, 015001.
  • [24] SHI D., MI G., WANG M., WEBSTER T.J., In vitro and ex vivo systems at the forefront of infection modeling and drug discovery, Biomaterials, 2019, 198, 228–249.
  • [25] SIMÕES D., MIGUEL S.P., RIBEIRO M.P., COUTINHO P., MENDONÇA A.G., CORREIA I.J., Recent advances on antimicrobial wound dressing: A review, European Journal of Pharmaceutics and Biopharmaceutics, 2018, 127, 130–141.
  • [26] SMYTH M., POURSORKHABI V., MOHANTY A.K., GREGORI S., MISRA M., Electrospinning highly oriented and crystalline poly(lactic acid) fiber mats, J. Mater. Sci., 2014, 49, 2430–2441.
  • [27] STODOLAK-ZYCH E., DZIERZKOWSKA E., MATWALLY S., MIKOŁAJCZYK M., GAJEK M., RAPACZ-KMITA A., Multifunctional porous membranes with antibacterial properties, International Journal of Polymeric Materials and Polymeric Biomaterials, 2019, 11, 68 (1–3), 19–26.
  • [28] STODOLAK-ZYCH E., ROZMUS K., DZIERZKOWSKA E., ZYCH Ł., RAPACZ-KMITA A., GARGAS M., KOŁACZKOWSKA E., CIENIAWSKA M., KSIĄŻEK K., ŚCISŁOWSKA-CZARNECKA A., The membrane with polylactide and hyaluronic fibers for skin substitute, Acta Bioeng. Biomech., 2018, Vol. 20, No. 4, 91–99.
  • [29] TUREK A., KASPERCZYK J., JELONEK K., BORECKA A., JANECZEK H., LIBERA M., GRUCHLIK A., DOBRZYŃSKI P., Thermal properties and morphology changes in degradation process of poly(L-lactide-co-glycolide) matrices with risperidone, Acta Bioeng. Biomech., 2015, 17 (1), 11–20.
  • [30] WANNATONG L., SIRIVAT A., SUPAPHOL P., Effects of solvents on electrospun polymeric fibers: preliminary study on polystyrene, Polym. Int., 2004, 53, 1851–1859.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f639d9d9-82bb-4a6e-9476-4b40b4183f73
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.