Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Zintegrowany ekonometryczny model do modelowania wymiany taboru autobusowego oraz określania wielkości floty rezerwowej w oparciu o konserwację predykcyjną
Języki publikacji
Abstrakty
Maintenance policies influence equipment availability and, thus, they affect a company’s capacity for productivity and competitiveness. It is important to optimize the Life Cycle Cost (LCC) of assets, in this case, passenger bus fleets. The paper presents a predictive condition monitoring maintenance approach based on engine oil analysis, to assess the potential impact of this variable on the availability of buses. The approach has implications on maintenance costs during the life of a bus and, consequently, on the determination of the best time for bus replacement. The paper provides an overview of economic replacement models through a global model, with an emphasis on availability and its dependence on maintenance and maintenance costs. These factors help to determine the size of the reserve fleet and guarantee availability.
Polityka konserwacji wpływa na gotowość sprzętu, a tym samym na wydajność i konkurencyjność przedsiębiorstwa. Ważne jest optymalizowanie kosztów cyklu życia (LCC) aktywów, w tym przypadku taboru autobusowego. W artykule przedstawiono metodę utrzymania ruchu polegającą na predykcyjnym monitorowaniu stanu w oparciu o analizę oleju silnikowego w celu oceny potencjalnego wpływu tej zmiennej na gotowość autobusów. Podejście to ma praktyczne konsekwencje jeśli chodzi o koszty utrzymania w trakcie eksploatacji autobusu, a także pozwala na ustalenie najlepszego czasu na wymianę pojazdów taboru. W pracy przedstawiono przegląd ekonomicznych modeli wymiany oraz opracowano model globalny integrujący te modele, ze szczególnym uwzględnieniem gotowości oraz jej zależności od konserwacji oraz kosztów utrzymania ruchu. Czynniki te pomagają określić wielkość floty rezerwowej i zapewnić gotowość taboru.
Czasopismo
Rocznik
Tom
Strony
358--368
Opis fizyczny
Bibliogr. 55 poz., rys., tab.
Twórcy
autor
- CeMMpRe - Centre for Mechanical engineering, Materials and Processes. University of Coimbra, 3030-788 Coimbra, Portugal
autor
- CeMMpRe - Centre for Mechanical engineering, Materials and Processes. University of Coimbra, 3030-788 Coimbra, Portugal
- IPC - Polytechnic Institute of Coimbra. 3000-271 Coimbra, Portugal
autor
- UP – University of Porto 4200-465 Porto, Portugal
autor
- Lulea University of Technology, Sweden
- Division of operation and Maintenance engineering, Department of Civil, Environmental and Natural Resources engineering, 971- 87 Luleå, Sweden
Bibliografia
- 1. Amaya E J, Tonaco R, Souza R Q, Álvares A J. Intelligent System Maintenance Based on Condition for Balbina Dam. University of Brasilia, Department of Mechanical Engineering and Mechatronics, Innovation Group in Industrial Automation (GIAI), CEP 70910-900, 8th Congress Engineering Mechanics Ibero Americano, Brasília, DF, Brazil, 2007.
- 2. André J C S. Probability and Statistics for Engineering. Lisbon: 1st Editions, Lidel - Technical Issues Lda, 2008; ISBN 9789727574773.
- 3. Aoudia M, Belmokhtar O. Economic impact of maintenance management ineffectiveness of an oil gas company. Journal of Quality in Maintenance Engineering 2008; 14(3): 237-261, https://doi.org/10.1108/13552510810899454.
- 4. Araujo M S, Bezerra C A. Development of components for stochastic systems for decision support. PUCPR Brazilian, Congress of Computer Science, Software Engineering, Brazil, 2004; 101-107.
- 5. Assaf Neto A. Corporate finance and value. São Paulo, Atlas, 2005; ISBN: 9788522460144.
- 6. Assis R, Julião J. Maintenance Management or Asset Management? (Costs over the life cycle). Communication 10th National Congress Maintenance, APMI, Figueira da Foz, Portugal, 2009.
- 7. Assis R. Decision support in maintenance management of physical assets. Lisbon: 1st Edition, Lidel - Technical issues, Lda, 2010. ISBN: 9789897521126.
- 8. ASTM International - Standard practice for measuring life-cycle costs of buildings and building system. Annual Book of ASTM Standards: ASTM International West Conshohocken, PA, E 917, 2002; 4(11).
- 9. BAS PAS 55 - Asset Management: PAS 55-1, Part 1: Specification for the optimized management of physical assets | PAS 55-2, Part 2: Guidelines for the application of PAS 55-1. British Standards, UK, 2008.
- 10. Beichelt F. A replacement policy based on limiting the cumulative maintenance cost. Department of Statistics and Acturial Science, University of Witwatersrand, Johannesburg, South Africa; International Journal of Quality & Reliability Management. MCB University Press, 0265-671X, 2001; 18(1): 76-83.
- 11. Bescherer F. Established Life Cycle Concepts in the Business Environment – Introduction and terminology, Laboratory of Industrial Management Report Series, report 1/2005, Helsinki University, 2005; ISBN 951-22-7549.
- 12. Cabral J S. Organization and Maintenance Management. Lisbon: 6th Edition, Lidel - Technical Issues Lda, 2006; ISBN: 9789727574407.
- 13. Cabrita C P, Cardoso A J M. Concepts and definitions of failure and breakdown in the Portuguese maintenance standards NP EN 13306: 2007 and NP EN 15341: 2009. CISE - Electromechatronic Systems Research Centre, University of Beira Interior, 17 Ibero-American Congress on Maintenance, Cascais, Portugal, 2013.
- 14. Campello R J G B, Amaral W C. Modelling And Linguistic Knowledge Extration From Systems Using Fuzzy Relation Models, Fuzzy Sets and Systems 2001; 121: 113-126, https://doi.org/10.1016/S0165-0114(99)00175-X.
- 15, Campos L C D, Vellasco M M B R, Lazo J G L. A stochastic model based on neural networks. PhD thesis, UFJF, Juiz de Fora, Brazil, 2010.
- 16. Casarotto F N. Investment analysis - financial mathematics, economic engineering, decision making, business strategy. São Paulo, Atlas, 2000; ISBN: 85-224-2572-8.
- 17. Chena D, Wanga L, Li L. Position computation models for high-speed train based on support vector machine approach. Control and Safety, Beijing Jiaotong University, Beijing 100044, China, 2015, https://doi.org/10.1016/j.asoc.2015.01.017.
- 18. Couellan N, Jana S, Jorquera T, George J P. Self-adaptive Support Vector Machine: A multi-agent optimisation perspective. Université de Toulouse, UPS IMT, F-31062 Toulouse Cedex 9, France, 2015, https://doi.org/10.1016/j.eswa.2015.01.028.
- 19. Di J, Hauke L. Optimal fleet utilization and replacement. Transportation Research Part E, 2000; 36(1): 3–30. ISSN: 1366-5545.
- 20. Durairaj S K, et al. Evaluation of life cycle cost analysis methodologies, corporate Environment Strategy 2002; 9(1): 30 39.
- 21. Emblemsvag J. Activity-based life-cycle costing. Managerial Auditing Journal 2001; 16(1): 17-27, https://doi.org/10.1108/02686900110363447.
- 22. Farinha J M T. Maintenance - Terminology and New Management Tools. Lisbon: 1st Edition, Monitor - Design and Publishing, Lda, 2011; ISBN 978-972-9413-82-7.
- 23. Feldens A G, Muller C J, Filomena T P, Neto F J K, Castro A S, Anzanello M J. Policy Assessment and Fleet Replacement by Means of Model Multicriteria Adoption. Porto Alegre, Brazil, 2010; ISSN 1980-4814.
- 24. Figueiredo L M J. Multicriteria model to support the replacement of hospital medical equipment, PhD thesis, IST, Lisbon, Portugal, 2009.
- 25. Francis K N, Leung and Ada, Cheng L M. Determining replacement policies for bus engines. City University of Hong Kong, Hong Kong; International Journal of Quality & Reliability Management, MCB University Press, 0265-671X, 2000; 17 (7): 771-783.
- 26. Gurney K. An introduction to neural networks, London, UCL Press, 1997; ISBN: 1857285034, https://doi.org/10.4324/9780203451519.
- 27. Huang J, Yao M. On the coordination of maintenance scheduling for transportation fleets of many branches of a logistic service provider. Ling Tung University1 Ling Tung Road, Nantun, Taichung 408, Taiwan, ROC, 2008, https://doi.org/10.1016/j.camwa.2008.01.037.
- 28. ISO 55000:2014 - Asset management - Overview, principles and terminology; ISO 55001:2014 - Asset management - Management systems – Requirements; ISO 55002:2014 - Asset management - Management systems - Guidelines for the application of ISO 55001, 2014.
- 29. Jennifer L R, Joseph C H. Equipment replacement under continuous and discontinuous technological change. IMA Journal of Management Mathematics 2005; 16 (1): 23-36, https://doi.org/10.1093/imaman/dph027.
- 30. Khasnabis S, Alsaidi E, Ellis R. Optimal allocation of resources to meet transit fleet requirements. Journal of Transportation Engineering 2002; 128 (6): 509-518, https://doi.org/10.1061/(ASCE)0733-947X(2002)128:6(509).
- 31. Korpi E, Ala-Risku T. Life cycle costing: a review of public case studies. Managerial Auditing Journal 2008; 23 (3): 240-261, https://doi.org/10.1108/02686900810857703.
- 32. Lindholm A, Suomala P. The possibilities of Life Cycle Costing in Outsourcing Decision Making. Frontiers of E Business Research 2004; 226–241.
- 33. Luna I, Ballini R, Soares S. Identification technique of linear and nonlinear time series. Magazine Automation and Control 2006; 17 (3): 245-256.
- 34. Makridakis S, Wheelwright S, Hyndman R F. Forecasting -Methods and Applications. New York: John Wiley & Sons, 1998; ISBN 0-471-53233-9.
- 35. Marco A R, Angelo A D, Leizer S, Silvio A B V. The use of Bayesian networks in the decision making process interventions in equipment. Industrial Engineering Program, Federal University of Bahia, Polytechnic School, XVIII Brazilian Congress Auto / 12 to 16 September 2010 Federation, 40210-630, Salvador, Brazil, 2010; 5058-5064.
- 36. Motta R R, Calôba G M. Investment analysis: decision making in industrial projects. São Paulo: Atlas, 2002; ISBN: 9788522430796.
- 37. Múller D. Stochastic processes and applications, Collection Economic volume - 2nd Series off Financial Law and Tax. Almedina, 2007.
- 38. Natali H, Yuri Y. Optimal equipment replacement without paradoxes: A continuous analysis. Operations Research Letters 2007; 35 (2): 245–250, https://doi.org/10.1016/j.orl.2006.03.001.
- 39. Oliveira J A N. Economic Engineering - an approach to investment decisions. São Paulo: McGraw-Hill Brazil, 1982.
- 40. Pinar K, Hartman J. Case Study: Bus Fleet Replacement. The Engineering Economist 2004; 49 (3): 253-278, https://doi.org/10.1080/00137910490498951.
- 41. Pooyan N, Shahbazian M, Salahshoor K, Hadian M. Simultaneous Fault Diagnosis using multi class support vector machine in a Dew Point process. Department of Instrumentation and Automation, Petroleum University of Technology, Ahwaz, Iran, 2015, https://doi.org/10.1016/j.jngse.2015.01.043.
- 42. Portuguese NP EN 15341: 2009 - Maintenance - performance indicators of maintenance (KPI), 2009.
- 43. Raposo H D N, Farinha J T, Oliveira R, Ferreira L A, André J. Time Replacement Optimization Models for Urban Transportation Buses with Indexation to Fleet Reserve. MPMM – Maintenance Performance Measurement and Management; Coimbra, Portugal, 2014; 1(1): ISBN 978-972-8954-43-7, https://doi.org/10.14195/978-972-8954-42-2_7.
- 44. Romaniuk M. On simulation of maintenance costs for water distribution system with fuzzy parameters. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2016; 18 (4): 514–527, https://doi.org/10.17531/ein.2016.4.6.
- 45. Scarf P A, Bouamra O A. Capital equipment replacement model for a fleet with variable size. Centre for OR and Applied Statistics, University of Salford, UK, Journal of Quality in Maintenance Engineering, © MCB University Press, 1355-251, 1999; 5 (1): 40-49, https://doi.org/10.1108/13552519910257050.
- 46. Seabra J, Graça B. Analysis of oils and greases in service. Proceedings of the Fifth National Congress of Industrial Maintenance - APMI, Figueira da Foz, 1996.
- 47. Simões A S. Conditional maintenance to Pollutant Emissions in Urban Buses, Using Degradation Prediction Models Based on the technology of vehicles and the Operating Conditions; PhD final thesis. Instituto Superior Técnico, 2011.
- 48. Tsoukalas L H, Uhrig R E. Fuzzy and neural approaches in engineering, New York: John Wiley, 1996. ISBN: 0471160032.
- 49. Vey I H, Rosa R M. Fleet replacement in municipal passenger transportation company: a case study. Federal University of Santa Maria, Electronic Accounting Journal 2004; 1 (1): 150–173.
- 50. Vujanovic D, Momcˇilovic V, Bojovic N, Papic V. Evaluation of vehicle fleet maintenance management indicators by application of DEMATEL and ANP. University of Belgrade, Faculty of Transport and Traffic Engineering, Vojvode Stepe 305, Belgrade, Serbia, 2012, https://doi.org/10.1016/j.eswa.2012.02.159.
- 51. Wijaya A R, Lundberg J, Kumar U. Robust-optimum multi-attribute age-based replacement policy. Journal of Quality in Maintenance Engineering 2012; 18 (3): 325-343.
- 52. William G Sullivan, Thomas N McDonald, Eileen M Van Aken. Robotics and Computer Integrated Manufacturing 2002; 18 (3–4): 255–265, https://doi.org/10.1016/S0736-5845(02)00016-9.
- 53. Yager R R, Zadeh L A. Introduction to fuzzy logic applications-An in intelligent systems Boston, Kluwer Academic, Publishers, 1992.
- 54. Zhao H. A chaotic time series prediction based on neural network: Evidence from the Shanghai composite index In China. Test and Measurement 2009; 2 (1): 382 –385.
- 55. Zohrul, Kabir A B M. Evaluation of overhaul/replacement policy for a fleet of buses. Journal of Quality in Maintenance Engineering 1996; 2 (3): 49-59 ,https://doi.org/10.1108/13552519610130440.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f632aa76-a302-4388-bedc-1a44d0c6dd58