PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Discrimination of lithofacies in tight gas reservoir using field-specific rock physics modeling scheme. A case study from a mature field of middle Indus Basin, Pakistan

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Consistency in the petrophysical and elastic properties is very critical for the characterization in low to intermediate (tight) porosity sandstone reservoirs. In this case study, we have applied an iterative and integrated workflow that provided consistency between the petrophysical and elastic properties using rock physics modeling scheme for the quantitative characterization of the low to intermediate porosity reservoir of Cretaceous (Pab) sandstone reservoir of the mature field in middle Indus basin of Pakistan. Before petrophysics and rock physics modeling (RPM), the well logs data quality is assessed and conditioned. We employed an inclusion-based rock physics model to estimate elastic (P-wave, S-wave, and density) properties by accounting for the effect of mineralogy using pore geometry (pore aspect ratio) variation. The RPM provided consistent elastic and petrophysical properties when compared with measured logs and improved lithofacies understanding in the tight gas reservoir. Finally, modeled elastic properties and lithofacies are assessed and characterized in a rock physics template (RPT) using an effective medium theory. The successful application of the integrated workflow exterminated the well log interpretation uncertainty by providing a consistency between the petrophysics and RPM, which can be extended for improved reservoir characterization and prospect evaluation across other areas with similar geological trends and reservoir distribution.
Czasopismo
Rocznik
Strony
2763--2780
Opis fizyczny
Bibliogr. 58 poz., rys., tab.
Twórcy
  • Pakistan Petroleum Limited (PPL), 3rd floor, PIDC House, Dr. Ziauddin Ahmed Road, Karachi, Pakistan
  • Pakistan Petroleum Limited (PPL), 3rd floor, PIDC House, Dr. Ziauddin Ahmed Road, Karachi, Pakistan
autor
  • Pakistan Petroleum Limited (PPL), 3rd floor, PIDC House, Dr. Ziauddin Ahmed Road, Karachi, Pakistan
  • Pakistan Petroleum Limited (PPL), 3rd floor, PIDC House, Dr. Ziauddin Ahmed Road, Karachi, Pakistan
Bibliografia
  • 1. Ab Fatah A, Hassan TT, Bekti RP (2019) Lee CS (2019) Application of integrated and iterative seismic petrophysics and rock physics modeling: case study of “l” field. In APGCE 1:1–5. https://doi.org/10.3997/2214-4609.201903382
  • 2. Ahmed N, Kausar T, Khalid P, Akram S (2018) Assessment of reservoir rock properties from rock physics modeling and petrophysical analysis of borehole logging data to lessen uncertainty in formation characterization in Ratana Gas Field, northern Potwar, Pakistan. J Geol Soc India 91(6):736–742. https://doi.org/10.1007/s12594-018-0932-8
  • 3. Ali M, Ma H, Pan H, Ashraf U, Jiang R (2020) Building a rock physics model for the formation evaluation of the Lower Goru sand reservoir of the Southern Indus Basin in Pakistan. J Pet Sci Eng 194:107461. https://doi.org/10.1016/j.petrol.2020.107461
  • 4. Archie GE (1942) The electrical resistivity log as an aid in determining some reservoir characteristics. Trans AIME 146(01):54–62. https://doi.org/10.2118/942054-G
  • 5. Ashraf U, Anees A, Shi W, Wang R, Ali M, Jiang R, Vo Thanh H, Iqbal I, Zhang X, Zhang H (2022) Estimation of porosity and facies distribution through seismic inversion in an unconventional tight sandstone reservoir of Hangjinqi area. Ordos Basin Front Earth Sci 10:1014052. https://doi.org/10.3389/feart.2022.1014052
  • 6. Avseth P, Mukerji T, Mavko G (2010) Quantitative seismic interpretation: applying rock physics tools to reduce interpretation risk. Cambridge Univ Press. https://doi.org/10.1190/1.3483770
  • 7. Avseth P, Johansen TA, Bakhorji A, Mustafa HM (2014) Rock-physics modeling guided by depositional and burial history in low-to-intermediate-porosity sandstones. Geophysics. 79(2):115–121. https://doi.org/10.1190/geo2013-0226.1
  • 8. Avseth P, van Wijngaarden AJ, Flesche H, Fristad T, Rykkje J, Mavko G (2005) Seismic fluid prediction in poorly consolidated and clay laminated sands. In 67th EAGE Conference & Exhibition. https://doi.org/10.3997/2214-4609-pdb.1.F011.
  • 9. Azeem T, Chun WY, Khalid P, Qing LX, Ehsan MI, Munawar MJ, Wei X (2017) An integrated petrophysical and rock physics analysis to improve reservoir characterization of Cretaceous sand intervals in Middle Indus Basin. Pak J Geophys Eng 14(2):212–225
  • 10. Batzle M, Wang Z (1992) Seismic properties of pore fluids. Geophysics 57(11):1396–1408. https://doi.org/10.1190/1.1443207
  • 11. Blatt H (1982) Sedimentary Petrology. Freeman, New York, W.H
  • 12. Brie A, Pampuri F, Marsala AF, Meazza O (1995) Shear sonic interpretation in gas-bearing sands. In SPE Annu Tech Conf Exhibi. https://doi.org/10.2118/30595-MS
  • 13. Carrasquero G, Fervari M, Tagliamonte RL, Tarchiani C (2020) Mind the gap between petrophysics and rock physics: petro-elastic facies for driving reservoir modeling. In 5th EAGE Workshop on Rock Phys 1:1–5. https://doi.org/10.3997/2214-4609.2020603019
  • 14. Castagna JP, Batzle ML, Eastwood RL (1985) Relationships between compressional-wave and shear-wave velocities in clastic silicate rocks. Geophysics 50(4):571–581. https://doi.org/10.1190/1.1441933
  • 15. Darling T (2005) Well logging and formation evaluation. Elsevier, Amsterdam, The Netherlands
  • 16. Deng X, Liu C, Guo Z, Liu X, Liu Y (2019) Rock physical inversion and quantitative seismic interpretation for the Longmaxi shale gas reservoir. J Geophys Eng 16(3):652–665. https://doi.org/10.1088/1742-2140/aa9fe1
  • 17. Díaz-Curiel J, Miguel MJ, Biosca B, Arévalo-Lomas L (2021) Gamma ray log to estimate clay content in the layers of water boreholes. J Appl Geophys. 195:104481. https://doi.org/10.1016/j.jappgeo.2021.1044
  • 18. Durrani MZA, Rahman SA, Talib M, Subhani G, Sarosh B (2022) Rock physics modeling based characterization of deep and tight mixed sedimentary (clastic and carbonate) reservoirs – a case study from north Potwar Basin of Pakistan. Geophys Prospect 71(2):263–278. https://doi.org/10.1111/1365-2478.13288
  • 19. Ellis DV, Singer JM (2007) Well logging for earth scientists. Springer, Dordrecht
  • 20. Eshelby JD (1957) The determination of the elastic field of an ellipsoidal inclusion, and related problems proceedings of the royal society of London series A. Mathematical and physical sciences. 241(1226):376–396. https://doi.org/10.1098/rspa.1957.0133
  • 21. Gassmann F (1951) Elastic waves through a packing of spheres. Geophysics 16(4):673–685. https://doi.org/10.1190/1.1437718
  • 22. Hamada GM, AbuShanab MA, Oraby ME (2008) Petrophysical properties evaluation of tight gas sand reservoirs using NMR and conventional openhole logs international petroleum technology conference 148. Eur Assoc GeosciEng. https://doi.org/10.3997/2214-4609-pdb.148.spe114254
  • 23. Han DH (1987) Effects of porosity and clay content on acoustic properties of sandstones and unconsolidated sediments (Doctoral dissertation, Stanford University).
  • 24. Heidari Z, Torres-Verdín C, Preeg WE (2012) Improved estimation of mineral and fluid volumetric concentrations from well logs in thinly bedded and invaded formations. Geophysics 77(3):79–98. https://doi.org/10.1190/geo2011-0454.1
  • 25. Jadoon IA, Lawrence RD, Lillie RJ (1993) Evolution of foreland structures: an example from the Sulaiman thrust lobe of Pakistan, southwest of the Himalayas. Geol Soc, London, Special publi 74(1):589–602. https://doi.org/10.1144/GSL.SP.1993.074.01.39
  • 26. Jiang M, Spikes KT (2016) Rock-physics and seismic-inversion based reservoir characterization of the Haynesville Shale. J Geophys Eng 13(3):220–233. https://doi.org/10.1088/1742-2132/13/3/220
  • 27. Kadri IB (1995a) Petroleum geology of Pakistan. Pakistan Petroleum Limited.
  • 28. Kazmi AH, Abbasi IA (2008) Stratigraphy & historical geology of Pakistan. Peshawar, Pakistan: Department & National Centre of Excellence in Geology.
  • 29. Kazmi AH, Rana RA (1982a) Tectonic map of Pakistan: Ministry of Petroleum and Natural Resources. Geological Survey of Pakistan.
  • 30. Kazmi AH, Jan MQ (1997) Geology and tectonics of Pakistan. Graphic publishers.
  • 31. Khalid P, Brosta DNDV, Blanco J (2014) A modified rock physics model for analysis of seismic signatures of low gas-saturated rocks. Arabian J Geosci 7(8):3281–3295. https://doi.org/10.1007/s12517-013-1024-0
  • 32. Kumar M, Dasgupta R, Singha DK, Singh NP (2018) Petrophysical evaluation of well log data and rock physics modeling for characterization of Eocene reservoir in Chandmari oil field of Assam-Arakan basin, India. J Pet Explor Prod Technol 8(2):323–340. https://doi.org/10.1007/s13202-017-0373-8
  • 33. Kuster GT, Toksöz MN (1974) Velocity and attenuation of seismic waves in two-phase media: part I. Theor Formul Geophys 39(5):587–606. https://doi.org/10.1190/1.1440450
  • 34. Mavko G, Bandyopadhyay K (2009) Approximate fluid substitution for vertical velocities in weakly anisotropic VTI rocks. Geophysics 74(1):D1-6. https://doi.org/10.1190/1.3026552
  • 35. Mavko G, Mukerji T (1998) Bounds on low-frequency seismic velocities in partially saturated rocks. Geophysics 63(3):918–924. https://doi.org/10.1190/1.1444402
  • 36. Mavko G, Mukerji T, Dvorkin J (2020) The rock physics handbook: tools for seismic analysis of porous media. Cambridge University Press, Cambridge
  • 37. Miller M, Shanley K (2010) Petrophysics in tight gas reservoirs—key challenges still remain. Lead Edge 29(12):1464–1469. https://doi.org/10.1190/1.3525361
  • 38. Moghal MA, Saqi MI, Jamij MA (2012b) Hydrocarbon Potential of Tight Sand Reservoir (Pab Sandstone) in Central Indus Basin-Pakistan. Search and Discovery Article. 50608.
  • 39. Osita MC, Chukwuemeka AP, Oniku AS, Okpogo EU, Sebastian AU, Dabari YM (2022) Application of seismic inversion in estimating reservoir petrophysical properties: case study of jay field of Niger Delta. Kuwait J Sci 49(2):1–12. https://doi.org/10.48129/kjs.10229
  • 40. Poupon A, Gaymard R (1970) The evaluation of clay content from logs. In SPWLA 11th Annual Logging Symposium.
  • 41. Poupon A, Leveaux JA (1971) Evaluation of water saturation in shaly formations. In SPWLA 12th Annual Logging Symposium.
  • 42. Qasim M, Tabassum K, Ding L, Tanoli JI, Awais M, Baral U (2022) Provenance of the late cretaceous pab formation, sulaiman fold-thrust belt, Pakistan: Insight from the detrital zircon U-Pb geochronology and sandstone petrography. Geol J 57(11):4439–4450. https://doi.org/10.1002/gj.4546
  • 43. Qureshi MA, Ghazi S, Riaz M, Ahmad S (2021) Geo-seismic model for petroleum plays an assessment of the Zamzama area, Southern Indus Basin, Pakistan. J Pet Explor Prod 11(1):33–44. https://doi.org/10.1007/s13202-020-01044-7
  • 44. Raymer LL, Hunt ER, Gardner JS (1980) An improved sonic transit time-to-porosity transform. In SPWLA 21st annual logging symposium.
  • 45. Ruiz F, Cheng A (2010) A rock physics model for tight gas sand. Lead Edge 29(12):1484–1489
  • 46. Siddiqui NK (2004) Sui main limestone: regional geology and the analysis of original pressures of a closed-system reservoir in central Pakistan. AAPG Bull 88(7):1007–1035
  • 47. Sohail HM, Abid MS (1983) Sui Gas Field General geology, production history and development strategy. PPL Internal Report.
  • 48. Sultan M, Gipson M (1995) Reservoir potential of the maastrachtian pab sandstone in the Eastern Sulaiman Foldbelt Pakistan. J Pe Geol. 18(3):309–328. https://doi.org/10.1111/j.1747-5457.1995.tb00908.x
  • 49. Talib M, Durrani MZ, Mathur A, Bekti RP, Ting J (2020) Integrated petrophysics and rock physics workflow validated by well to seismic tie and AVO modelling. In Fifth EAGE Workshop on Rock Phys 1:1–5. https://doi.org/10.3997/2214-4609.2020603014
  • 50. Talib M, Durrani MZ, Palekar AH, Sarosh B, Rahman SA (2022) Quantitative characterization of unconventional (tight) hydrocarbon reservoir by integrating rock physics analysis and seismic inversion: a case study from the Lower Indus Basin of Pakistan. Acta Geophys 9:1–7. https://doi.org/10.1007/s11600-022-00885-6
  • 51. Teixeira L, Cruz N, Silvany P, Fonseca J (2017) Quantitative seismic interpretation integrated with well-test analysis in turbidite and presalt reservoirs. Lead Edge 36(11):931–937. https://doi.org/10.1190/tle36110931.1
  • 52. Toqeer M, Ali A (2017) Rock physics modelling in reservoirs within the context of time lapse seismic using well log data. Geosci J 21(1):111–122. https://doi.org/10.1007/s12303-016-0041-x
  • 53. Tosaya CA (1982b) Acoustical properties of clay-bearing rocks Doctoral dissertation, Stanford University
  • 54. Verga F, Viberti D, Gonfalini M (2002) Uncertainty evaluation in well logging: analytical or numerical approach? In SPWLA 43rd Annual Logging Symposium.
  • 55. Vernik L (2016) Seismic petrophysics in quantitative interpretation. Soc Explor Geophys (SEG). https://doi.org/10.1190/1.9781560803256
  • 56. Wyllie MR, Gregory AR, Gardner GH (1958) An experimental investigation of factors affecting elastic wave velocities in porous media. Geophysics 23(3):459–93. https://doi.org/10.1190/1.1438493
  • 57. Xu S, White RE (1995) A new velocity model for clay-sand mixtures 1. Geophys Prospect 43(1):91–118. https://doi.org/10.1111/j.1365-2478.1995.tb00126.x
  • 58. Yasin Q, Sohail GM, Khalid P, Baklouti S, Du Q (2021) Application of machine learning tool to predict the porosity of clastic depositional system, Indus Basin, Pakistan. J Petrol Sci Eng 197:107975. https://doi.org/10.1016/j.petrol.2020.107975
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f631a6ad-17a2-4656-a51b-b4a163e00a42
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.