Prof. dr hab. inż. Ryszard Bartnik, Wydział Inżynierii Produkcji i Logistyki, Politechnika Opolska

Analiza termodynamiczna i ekonomiczna hierarchicznej, dwuobiegowej elektrowni jądrowej z regeneracją ciepła

Wpracach [1-3] przedstawiono termodynamiczną i ekonomiczną analizę hierarchicznej elektrowni jądrowej z jednym, chłodzonym helem wysokotemperaturowym reaktorem HTGR. W pracy [4] zaprezentowano natomiast analizę elektrowni z dwoma takimi reaktorami. W niniejszej pracy ponownie przeanalizowano elektrownię z dwoma reaktorami HTGR, jednak w porównaniu z [4] z tą istotną różnicą, że w wysokotemperaturowym obiegu Joule'a zastosowano regenerację ciepła (rys. 1, 2), która znacząco zwiększa jego sprawność.

Rys. 1. Schemat ideowy hierarchicznej gazowo-gazowej elektrociepłowni i elektrowni jądrowej z dwoma wysokotemperaturowymi reaktorami i helem jako czynnikiem obiegowym oraz z regeneracją ciepła w obiegu wysokotemperaturowym (w obiegu wysokotemperaturowym ma miejsce dwustopniowe rozprężanie i dwustopniowe sprężanie; w obiegu niskotemperaturowym ma miejsce jednostopniowe rozprężanie i jednostopniowe sprężanie; C - wymiennik ciepłowniczy; C_{HP} - dwustopniowa sprężarka wysokociśnieniowa z chłodnicą międzystopniową Ch; C_{LP} - sprężarka niskociśnieniowa; G - generator elektryczny; HTGR - wysokotemperaturowy reaktor jądrowy chłodzony helem; H - wymiennik ciepła; R - regeneracyjny wymiennik ciepła; TE_w, TE_n - turboekspandery wysoko-i niskociśnieniowy; w przypadku elektrowni strumień ciepła Q_c jest wyprowadzany nie do steci ciepłowniczej, a do otoczenia)

Rys. 2. Obieg *Joule'a* turboekspandera wysokociśnieniowego z dwustopniowym rozprężaniem i dwustopniowym sprężaniem oraz z regeneracją ciepła (ciepło regeneracji obrazują pola pod izobarami przy czym pole A-3-3R-B równa się polu C-7R-7-D)

Rys. 3. Obieg *Joule'a* turboekspandera niskociśnieniowego z jednostopniowym rozprężaniem i jednostopniowym sprężaniem

Analiza termodynamiczna doboru optymalnych parametrów termicznych czynnika obiegowego w poszczególnych punktach obiegu Joule'a z dwustopniowym rozprężaniem i dwustopniowym sprężaniem oraz z regeneracją ciepła

Optymalne termiczne parametry czynnika obiegowego (tj. parametry gwarantujące maksymalną sprawność efektywną η_{TE_w} turbozespołu wysokociśnieniowego) w poszczególnych punktach obiegu Joule'a z regeneracją ciepła (rys. 2) wyznacza się za pomocą wzoru:

$$\eta_{TE_w} = \frac{N_{TE_w}}{\dot{Q}_{dop,TE_w}} = \frac{N_{\exp_w} - N_{S_w}}{\dot{Q}_{dop,TE_w}} = \frac{\eta_m^{TE} (T_4 - T_5 + T_6 - T_7) - \frac{1}{\eta_m^S} (T_1 - T_0 + T_3 - T_2)}{T_4 - T_{3R} + T_6 - T_5} \to \max$$
(1)

gdzie N_{TE_w} oznacza moc efektywną turbozespołu wysokociśnieniowego, N_{exp_w} , N_{Sw} moce efektywne turboekspandera wysokociśnieniowego i sprężarki wysokociśnieniowej, \dot{Q}_{dop,TE_w} a strumień ciepła doprowadzonego do obiegu. Moce N_{TE_w} i \dot{Q}_{dop,TE_w} wyrażają się wzorami:

$$N_{TE_{w}} = \dot{m}_{TE_{w};hel} c_{p,hel} \left[\eta_{m} (T_{4} - T_{5} + T_{6} - T_{7}) - \frac{1}{\eta_{m}} (T_{1} - T_{0} + T_{3} - T_{2}) \right] = \dot{Q}_{HTGR_{1}} \left[\frac{\eta_{m} (T_{4} - T_{5} + T_{6} - T_{7}) - \frac{1}{\eta_{m}} (T_{1} - T_{0} + T_{3} - T_{2})}{T_{4} - T_{3R}} \right]$$
(2)

przy czym:

$$\dot{Q}_{dop,TE_w} = \dot{Q}_{HTGR_1} + \dot{Q}_{HTGR_2} \tag{3}$$

$$Q_{HTGR_1} = \dot{m}_{TE_w;hel} c_{p,hel} (T_4 - T_{3R})$$
(4)

$$Q_{HTGR_2} = \dot{m}_{TE_w;hel} c_{p,hel} (T_6 - T_5) .$$
(5)

We wzorze (2) przyjęto, że sprawności mechaniczne sprężarki η_m^s i turboekspandera η_m^{TE} (patrz wzór (1)) są sobie równe: $\eta_m^s = \eta_m^{TE} = \eta_m$ (w obliczeniach przyjęto, że $\eta_m^s = \eta_m^{TE} = \eta_m = 0.97$). Wykorzystując wzór (1) z warunku:

$$\frac{d\eta_{TE_w}}{dz_1} = 0 \tag{6}$$

wyznacza się optymalny stosunek ciśnień $z_{1,opt}$, dla którego turbozespół przyjmuje maksymalną sprawność $\eta_{TE_w}^{\max}$ (identycznie postępuje się przy obliczeniu maksymalnej sprawności efektywnej $\eta_{TE_n}^{\max}$ turboekspandera niskociśnieniowego [3] - rys. 3, wzór (20)).

Po zróżniczkowaniu równania (1) i wykorzystaniu warunku (6) otrzymuje się:

$$a_{tr}(z_{1,opt})^2 + b_{tr}z_{1,opt} + c_{tr} = 0,$$
(7)

skąd

$$z_{1,opt} = \frac{-b_{tr} - \sqrt{\Delta_{tr}}}{2a_{tr}} ,$$
 (8)

przy czym:

$$\begin{aligned} a_{tr} &= b_{TE_{w}} d_{TE_{w}} - a_{TE_{w}} e_{TE_{w}}; \ b_{tr} = 2(a_{TE_{w}} f_{TE_{w}} - c_{TE_{w}} d_{TE_{w}}); \ c_{tr} = c_{TE_{w}} e_{TE_{w}} - b_{TE_{w}} f_{TE_{w}}; \\ \Delta_{tr} &= b_{tr}^{2} - 4a_{tr} c_{tr}; \ a_{TE_{w}} = 2\frac{T_{0}}{\eta_{i}^{S} \eta_{m}}; \ b_{TE_{w}} = 2\eta_{m} \eta_{i}^{TE} T_{4} + \frac{T_{0} + T_{2}}{\eta_{i}^{S} \eta_{m}}; \ c_{TE_{w}} = 2\eta_{m} \eta_{i}^{TE} T_{4} \sqrt{\frac{T_{2}}{T_{0}}} \\ d_{TE_{w}} &= (1 - \eta_{R}) \frac{T_{0}}{\eta_{i}^{S}}; \ e_{TE_{w}} = T_{4} - (1 - \eta_{R}) T_{2} \left(1 - \frac{1}{\eta_{i}^{S}}\right) - \eta_{R} (1 - \eta_{i}^{TE}) T_{4} + \eta_{i}^{TE} T_{4} \\ f_{TE_{w}} &= (1 + \eta_{R}) \eta_{i}^{TE} T_{4} \sqrt{\frac{T_{2}}{T_{0}}} \end{aligned}$$

gdzie:

 η_i^s , η_i^{TE} - sprawności wewnętrzne sprężarek i turboekspanderów (w obliczeniach przyjęto $\eta_i^{TE} = 0.87$, $\eta_i^s = 0.85$; temperaturę otoczenia przyjęto równą $T_0 = 300$ K, temperaturę T_2 za chłodnicą międzystopniową przyjęto równą $T_2 = T_0 + 20$ K). Drugi pierwiastek równania (7) jest sprzeczny fizycznie. *Maximum maximorum* (absolutne maksimum) wartości $\eta_{TE_w}^{max}$ oblicza

Drugi pierwiastek równania (7) jest sprzeczny fizycznie. *Maximum maximorum* (absolutne maksimum) wartości $\eta_{TE_w}^{\max}$ oblicza się z równania (1) po podstawieniu w nim za temperatury ich optymalne wartości. Oblicza się je dla optymalnych wartości $z_{1,opt}$, $z_{2,opt}$, $z_{3,opt}$ (wzory (8), (13), (14)):

$$T_{1} = T_{0} \left[1 + \frac{1}{\eta_{i}^{S}} \left(z_{1,opt} - 1 \right) \right]$$
(9)

$$T_{3} = T_{2} \left[1 + \frac{1}{\eta_{i}^{s}} \left(z_{2,opt} - 1 \right) \right]$$
(10)

$$T_{5} = T_{4} \left[1 - \eta_{i}^{TE} \left(1 - \frac{1}{z_{3,opt}} \right) \right]$$
(11)

$$T_{7} = T_{6} \left[1 - \eta_{i}^{TE} \left(1 - \frac{1}{z_{3,opt}} \right) \right]$$
(12)

W pracy [3] wykazano, że aby obieg Joule'a z dwustopniowym rozprężaniem i dwustopniowym sprężaniem mógł osiągać absolutne maksimum sprawności energetycznej, niezależnie od tego, czy jest to obieg z regeneracją ciepła, czy bez regeneracji - to muszą zachodzić związki:

$$z_{2,opt} = \frac{T_0}{T_2} z_{1,opt}$$
(13)

$$z_{3,opt} = \sqrt{\frac{T_0}{T_2}} z_{1,opt}$$
(14)

przy czym:

$$z_{1,opt} = \frac{T_{1s}}{T_0} = \left(\frac{p_{1,opt}}{p_0}\right)^{\frac{\kappa-1}{\kappa}}$$
(15)

$$z_{2,opt} = \frac{T_{3s}}{T_2} = \left(\frac{p_{3,opt}}{p_{1,opt}}\right)^{\frac{\kappa-1}{\kappa}}$$
(16)

$$z_{3,opt} = \frac{T_4}{T_{5s}} = \left(\frac{p_{4,opt}}{p_{5,opt}}\right)^{\frac{\kappa-1}{\kappa}} = \frac{T_6}{T_{7s}} = \left(\frac{p_{6,opt}}{p_7}\right)^{\frac{\kappa-1}{\kappa}}$$
(17)

gdzie:

 κ - wykładnik izentropy helu (κ = 1,66),

p- ciśnienia ($p_2 = p_1$, $p_4 = p_3$, $p_6 = p_5$ oraz $p_7 = p_0$; ciśnienie p_0 jest daną wartością wejściową; w obliczeniach przyjęto $p_7 = p_0 = 1$ bar), T- temperatury bezwzględne (temperatury T_0 , T_2 , T_4 , T_6 , są danymi wartościami wejściowymi, przy czym założono, że $T_4 = T_6$ (im wyższe są temperatury T_4 , T_6 , tym oczywiście większa jest sprawność obiegu *Joule'a*).

Związki (13) i (14) gwarantują, że praca sprężania w obiegu wysokotemperaturowym Joule'a jest minimalna, a praca rozprężania maksymalna. Konsekwencją zachodzenia tych związków są równości temperatur: $T_{1s} = T_{3s}$, $T_{5s} = T_{7s}$ (rys. 2, 11, 19). Optymalne wartości temperatur T_{3R} , T_{7R} oblicza się za pomocą wzoru na sprawność energetyczną regeneracyjnego wymiennika ciepła *R* (rys. 1, 2):

$$\eta_R = \frac{T_{3R} - T_3}{T_7 - T_3} = \frac{T_7 - T_{7R}}{T_7 - T_3} \tag{18}$$

We wzorze tym za T_3 i T_7 należy oczywiście podstawić wartości obliczone za pomocą wzorów (10), (12). W obliczeniach przyjęto, że $\eta_R = 0.7$ (zwiększanie wartości η_R skutkuje zwiększaniem mocy turboekspandera wysokociśnieniowego i zmniejszaniem mocy turboekspandera niskociśnieniowego).

Istotne jest także znalezienie wartości $z_{1,N}$ (rys. 5, 13), dla której turbozespół wysokotemperaturowy osiąga maksymalną moc $N_{TE_w}^{max}$. Wartość ta wynika z warunku:

$$\frac{dN_{TE_w}}{dz_1} = 0.$$
⁽¹⁹⁾

Porównując wzór (2) ze wzorem (1) staje się bowiem oczywiste, że wartość $z_{1,N}$ jest różna od wartości $z_{1,opt}$, $z_{1,N} \neq z_{1,opt}$, tj. wartości dla której turbozespół wysokotemperaturowy przyjmuje maksymalną sprawność $\eta_{TE_{W}}^{\max}$ (rys. 4, 12). Mianowniki bowiem wzorów (1) i (2) są różne, co wynika z dwóch reaktorów HTGR₁ i HTGR₂, a więc dwóch strumieni ciepła $\hat{Q}_{HTGR_{1}}$ $\dot{Q}_{HTGR_{2}}$ doprowadzanych do obiegu (wzory (4), (5), rys. 9, 17). W konsekwencji tyle samo jest stopni rozprężania. Strumień masy helu, któ-

ry krąży w obiegu jest natomiast oczywiście tylko jeden (patrz wzory (4) i (5)). W przypadku natomiast obiegu Joule'a z jednostopniowym rozprężaniem (rys. 3) zachodzi równość: $z_{1,N} = z_{1,opt}$. Mianowniki bowiem wzorów na sprawność η_{TE_n} i moc efektywną N_{TE_n} mają takie same postacie:

$$\eta_{TE_n} = \frac{N_{TE_n}}{\dot{Q}_{dop,TE_n}} = \frac{N_{exp_n} - N_{S_n}}{\dot{Q}_{dop,TE_n}} = \frac{\eta_m (T_{10} - T_{11}) - \frac{1}{\eta_m} (T_9 - T_0)}{T_{10} - T_9}$$
(20)

$$N_{TE_n} = \dot{m}_{TE_n;hel} c_{p,hel} \left[\eta_m (T_{10} - T_{11}) - \frac{1}{\eta_m} (T_9 - T_0) \right] = \dot{Q}_{dop,TE_n} \left[\frac{\eta_m (T_{10} - T_{11}) - \frac{1}{\eta_m} (T_9 - T_0)}{T_{10} - T_9} \right]$$
(21)

Strumień masy helu w obiegu *Joule'a* turboekspandera wysokotemperaturowego $\dot{m}_{TE_w:hel}$ jest zdeterminowany mocą cieplną reaktora \dot{Q}_{HTGR_i} (wzór (4)). Natomiast strumień masy helu $\dot{m}_{TE_n:hel}$ w obiegu *Joule'a* turboekspandera niskotemperaturowego wynika z bilansu energii wymiennika ciepła *H* (rys. 1). Po pominięciu strat ciepła do otoczenia bilans ten wyraża się równaniem:

$$\dot{Q}_{dop,TE_n} = \dot{m}_{_{TE_n;hel}} c_{p,hel} (T_{10} - T_9) = \dot{m}_{_{TE_w;hel}} c_{p,hel} (T_{7R} - T_8) .$$
(22)

Jak wykazano w [2] można przyjąć, że:

$$\dot{m}_{TE_n;hel} = \dot{m}_{TE_w;hel} \tag{23}$$

Całkowita wartość strumienia masy helu w układzie hierarchicznym (rys. 1, 6, 14) wyraża się zatem wzorem:

$$\dot{m}_{hel} = \dot{m}_{TE_w;hel} + \dot{m}_{TE_n;hel} = 2\dot{m}_{TE_w;hel}$$
(24)

Po zróżniczkowaniu równania (21) i wykorzystaniu warunku (19) otrzymuje się:

$$z_{1,N} = \frac{-b_{tr,N} - \sqrt{\Delta_{tr,N}}}{2a_{tr,N}},$$
(25)

przy czym:

$$\begin{split} a_{tr,N} &= b_{TE_{w}} d_{TE_{w}} - a_{TE_{w}} e_{TE_{w,N}}; \ b_{tr,N} = 2(a_{TE_{w}} f_{TE_{w,N}} - c_{TE_{w}} d_{TE_{w}}); c_{tr,N} = c_{TE_{w}} e_{TE_{w,N}} - b_{TE_{w}} f_{TE_{w,N}}; \\ \Delta_{tr,N} &= b_{tr,N}^{2} - 4a_{tr,N} c_{tr,N}; \ e_{TE_{w,N}} = T_{4} - (1 - \eta_{R}) T_{2} \left(1 - \frac{1}{\eta_{i}^{S}}\right) - \eta_{R} (1 - \eta_{i}^{TE}) T_{4}, \\ f_{TE_{w,N}} &= \eta_{R} \eta_{i}^{TE} T_{4} \sqrt{\frac{T_{2}}{T_{0}}}. \end{split}$$

Całkowita moc elektryczna układu hierarchicznego N_{el} wyraża się wzorem:

$$N_{el} = N_{TE_w,el} + N_{TE_n,el} \tag{26}$$

przy czym

$$N_{TE_{w},el} = N_{TE_{w}} \eta_{G} \tag{27}$$

$$N_{TE_n,el} = N_{TE_n} \eta_G \tag{28}$$

gdzie:

- η_G sprawność generatora elektrycznego (w obliczeniach przyjęto η_G = 0,98).
 - Sprawność energetyczną η_{G-G} hierarchicznego układu *gazowo-gazowego* oblicza się z oczywistego wzoru:

$$\eta_{G-G} = \frac{N_{TE_w} + N_{TE_n}}{\dot{Q}_{HTGR} + \dot{Q}_{HTGR}}$$
(29)

Wybrane wyniki termodynamicznych obliczeń

Obliczenia przeprowadzono dla mocy cieplnej reaktora Q_{HTGR} = 500 MW oraz dla temperatur helu doprowadzanego do turboekspanderów wysokociśnieniowych $HTGR_1$ i $HTGR_2$ wynoszących $T_4 = T_6 = 1300$ i 1800 K. Przyjęto ponadto, że temperatura $T_{_{10}}$ helu doprowadzanego do turboekspandera niskociśnieniowego jest mniejsza od temperatury $T_{_{7R}}$ o wartość arDelta T = 30 K. Wartość ta jest "graniczną" wartością logarytmicznej różnicy temperatur mającą wpływ na wielkość powierzchni wymiennika ciepła *H* [6]. Wyniki obliczeń przedstawiono na rys. 4-19. Należy zaznaczyć, że jedynie wszystkie wartości η_{TE_n} (wzór (20)) na rys. 4 i 12 (również wartości p_9^{opt} na rys. 10 i 18) zostały obliczone z wykorzystaniem warunku $d\eta_{TE_n}/dz_{TE_n} = 0$ i stąd na osiach rzędnych występują wielkości $\eta_{TE_n}^{max}$ i p_9^{opt} .

Rys. 5. Moce N_{el} , $N_{TE_{R},el}$, $N_{TE_{W},el}$ w funkcji parametru z_1 dla $T_4 = T_6 = 1300$ K $(1 - N_{el}; 2 - N_{TE_{w},el}; 3 - N_{TE_{n},el})$

O UKIEM NAUKI

Rys. 9. Moce cieplne reaktorów \dot{Q}_{HTGR_1} , \dot{Q}_{HTGR_2} w funkcji parametru z_1 dla $T_4 = T_6 = 1300$ K $(1 - \dot{Q}_{HTGR_1}; 2 - \dot{Q}_{HTGR_2})$

Rys. 10. Ciśnienia p_1 , p_3 , p_5 , p_9^{opt} w funkcji parametru z_1 dla $T_4 = T_6 = 1300 {\rm K}$

Rys. 11. Temperatury $T_1, T_{1s}, T_3, T_{3s}, T_{3R}, T_5, T_{5s}, T_7, T_{7s}, T_{7R}, T_9, T_{10}, T_{11}$ w funkcji parametru z_1 dla $T_4 = T_6 = 1300$ K

Na rys. 12-19 w celach porównawczych przedstawiono wyniki obliczeń termodynamicznych dla temperatur $T_4 = T_6 = 1300$ K.

OKIEM NAUKI

Rys. 14. Strumień masy helu \dot{m}_{hel} w funkcji parametru z_1 dla $T_4 = T_6 = 1800 {\rm K}$

O UKIEM NAUKI

Rys. 16. Stosunek mocy N_{TE_n}/N_{TE_w} w funkcji parametru z_1 dla $T_4 = T_6 = 1800$ K

Rys. 17. Moce cieplne reaktorów \dot{Q}_{HTGR_1} , \dot{Q}_{HTGR_2} w funkcji parametru z_1 dla $T_4 = T_6 = 1800 \text{K}$ $(1 - \dot{Q}_{HTGR_1}; 2 - \dot{Q}_{HTGR_2})$

Podsumowanie termodynamicznych i ekonomicznych analiz hierarchicznych, gazowo-gazowych elektrowni jądrowych

W artykule [3] *in gremio* zaprezentowano 4 układy hierarchicznych elektrowni jądrowych *gazowo-gazowych* (warianty I, II, III i IV). W artykułach [1-3] przedstawiono analizę termodynamiczną i ekonomiczną wariantu IV, w [4] analizę termodynamiczną wariantu II. W niniejszym artykule przedstawiono natomiast analizę termodynamiczną wariantu I oraz w kilku poniższych zdaniach najważniejsze wyniki obliczeń dla wariantu III. Artykuł ten "zamyka" tym samym problematykę hierarchicznych elektrowni gazowo-gazowych zaprezentowanych w [3].

Wariant III różni się od wariantu IV tym, że zastosowano w nim dwustopniowe sprężanie czynnika w wysokotemperaturowym obiegu Joule'a [3]. Po wykonaniu obliczeń można stwierdzić, że stosowanie dwustopniowego sprężania bez dwustopniowego rozprężania jest termodynamicznie i ekonomicznie nieopłacalne. Pomimo bowiem tego, że sprawność energetyczna obiegu wysokotemperaturowego w wariancie III jest oczywiście większa od sprawności obiegu bez dwustopniowego sprężania (choć zaledwie o ok. dwa promile i maleje do zera ze wzrostem temperatury helu doprowadzanego do turboekspandera do wartości 1800 K), to całkowita sprawność energetyczna układu gazowo-gazowgo $\eta_{G-G,max}$ w wariancie IV jest istotnie większa od sprawności w wariancie III i to aż o ok. 5-7 punktów procentowych (tab. 1). Wynika to z istotnie wyższej temperatury helu, o ok. 50-70 K, doprowadzanego do niskotemperaturowgo obiegu Joule'a w wariancie IV w porównaniu z tą temperaturą w wariancie III. W tab. 1 zaprezentowano ponadto szacunkowe wyniki jednostkowych kosztów produkcji elektryczności we wszystkich wariantach I-IV.

Jak wynika z przedstawionych w tab. 1 wyników szacunkowych ekonomicznych obliczeń najbardziej opłacalny jest wariant II. Najmniejsze są bowiem wówczas jednostkowe koszty produkcji energii elektrycznej przed i po zamortyzowaniu elektrowni k_{el} i $k_{el,amort}$. Obliczenia przeprowadzono przy standardowym założeniu, że nakłady inwestycyjne są funkcją mocy N_{el} [1]. Najwłaściwszym byłoby jednak ustalenie nakładów w funkcji strumienia masy helu \dot{m}_{hel} . Im jest on bowiem mniejszy, tym mniejsze są nakłady. Najmniejsze są bowiem wówczas rozmiary maszyn. Najmniejsze nakłady są, gdy jednostkowy strumień masy helu przypadający na jednostkę mocy elektrowni osiąga wartość minimalną $D_{min} = (\dot{m}_{hel} / N_{el})_{min}$ (tab. 1). Ustalenie nakładów w funkcji \dot{m}_{hel} jest jednak trudne. Wystarczającym zatem przybliżeniem jest wykonanie szacunkowej analizy efektywności ekonomicznej pracy elektrowni przy założeniu, że nakłady są funkcją mocy N_{er} .

Q _{HTGR1} = 500 [MW]	Wariant I		Wariant II		Wariant III		Wariant IV	
	*T4 = T6 = 1300 K	T4 = T6 = 1800 K	T4 = T6 = 1300 K	T4 = T6 = 1800 K	*T2 =1300 K	T2 = 1800 K	T2 = 1300 K	T2 = 1800 K
$\eta_{\text{G-G,max}}$	0,425	0,525	0,364	0,461	0,323	0,419	0,372	0,487
D _{min} [kg/MWs]	0,97	0,47	0,89	0,44	1,41	0,71	1,53	0,77
k _{el} [PLN/MWh]	176	167	153	144	185	175	174	164
**k _{el,amort} [PLN/MWh]	91	86	79	74	101	95	90	84

Tab. 1. Wybrane wyniki obliczeń techniczno-ekonomicznych

*temperatura helu doprowadzanego do turboekspandera wysokotemperaturowego

**okres amortyzacji elektrowni przyjęto równy 60 lat

Na koniec należy mocno podkreślić, co szalenie ważne, że jednostkowe (na jednostkę zainstalowanej mocy elektrycznej) nakłady inwestycyjne na układy gazowo-gazowe są o kilkadziesiąt procent mniejsze od nakładów na elektrownie jądrowe, w których realizowany jest obieg *Clausiusa-Rankine'a* [3]. Roczne koszty finansowe ich działania są zatem zdecydowanie mniejsze od kosztów dla elektrowni *"Clausiusa-Rankine'a*". Ponadto w przypadku elektrowni gazowo-gazowych "odpadają" istotne problemy i koszty eksploatacyjne związane z gospodarką wodną obiegu parowego *Clausiusa-Rankine'a*. Elektrownie jądrowe *gazowo-gazowe* mogą zatem powstawać również i tam, gdzie nie ma wody. W konsekwencji, co należy kolejny raz podkreślić, elektrownie atomowe w hierarchicznej technologii *gazowo-gazowej* i koszty ich eksploatacji są dużo mniejsze od kosztów eksploatacji i nakładów finansowych na elektrownie jądrowe *"Clausiusa-Rankine'a*". Tym samym i jednost-kowy koszt produkcji w nich energii elektrycznej (tab. 1) jest również dużo mniejszy od kosztu w elektrowniach jądrowych *"Clausiusa-Rankine'a*" [2].

Literatura

^{1.} Bartnik R., Kowalczyk T.: Thermodynamic and economic analysis of a hierarchical gas-gas nuclear power plant with a high-temperature reactor and helium as a circulating medium, Nuclear Engineering and Design, 2021, vol. 382.

^{2.} Bartnik R., Kowalczyk T.: Efektywność termodynamiczna i ekonomiczna innowacyjnych hierarchicznych gazowo-gazowych elektrowni jądrowych z wysokotemperaturowym reaktorem i helem jako czynnikiem obiegowym, Nowa Energia, nr 2/2021.

^{3.} Bartnik R.: Hierarchiczne dwuobiegowe gazowo-gazowe i gazowo-parowe elektrownie i elektrociepłownie jądrowe z wysokotemperaturowymi reaktorami i helem oraz wodą i parą jako czynnikami obiegowymi, Nowa Energia, nr 5-6/2021.

^{4.} Bartnik R.: Analiza termodynamiczna i ekonomiczna hierarchicznej dwuobiegowej elektrowni jądrowej z dwustopniowym rozprężaniem i dwustopniowym sprężaniem w obiegu Joule'a w zakresie wysokich temperatur, Nowa Energia, nr 1/2022.

^{5.} Bartnik R., Kowalczyk T.: Hierarchical gas-gas systems. Thermal and Economic Effectiveness. Wydawnictwo Springer, London 2021.

^{6.} Bartnik R.: Elektrownie i elektrociepłownie w hierarchicznej technologii gazowo-gazowej Efektywność energetyczna i ekonomiczna, Wydawnictwo PWN, Warszawa 2022.