PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Impact of hydrogen blended natural gas on linepack energy for existing high pressure pipelines

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this work is to examine the impact of the hydrogen blended natural gas on the linepack energy under emergency scenarios of the pipeline operation. Production of hydrogen from renewable energy sources through electrolysis and subsequently injecting it into the natural gas network, gives flexibility in power grid regulation and the energy storage. In this context, knowledge about the hydrogen percentage content, which can safely effect on materials in a long time steel pipeline service during transport of the hydrogen-natural gas mixture, is essential for operators of a transmission network. This paper first reviews the allowable content of hydrogen that can be blended with natural gas in existing pipeline systems, and then investigates the impact on linepack energy with both startup and shutdown of the compressors scenarios. In the latter case, an unsteady gas flow model is used. To avoid spurious oscillations in the solution domain, a flux limiter is applied for the numerical approximation. The GERG-2008 equation of state is used to calculate the physical properties. For the case study, a tree-topological high pressure gas network, which have been inservice for many years, is selected. The outcomes are valuable for pipeline operators to assess the security of supply.
Rocznik
Strony
111--124
Opis fizyczny
Bibliogr. 23 poz., rys.
Twórcy
autor
  • Warsaw University of Technology, Department of Heating and Gas Systems, Nowowiejska 20, 00-653 Warsaw, Poland
  • Warsaw University of Technology, Department of Heating and Gas Systems, Nowowiejska 20, 00-653 Warsaw, Poland
Bibliografia
  • [1] Limberger W.: Utilisation of the Natural Gas Grid for the Hydrogen Infrastructure. PhD thesis, Technical University Wien, Wien 2018.
  • [2] Blacharski T., Janusz P., Kaliski M., Zabrzeski Ł.: The effect of hydrogen transported through gas pipelines on the performance of natural gas grid, AGH Drilling, Oil, Gas,33(2016), 2, 515–529. doi: 10.7494/drill.2016.33.2.515.
  • [3] Chalgham W., Wu K.-Y., Mosleh A.: System-level prognosis and health monitoring modeling framework and software implementation for gas pipeline system integrity management. J. Nat. Gas Sci. Eng. 84(2020), 103671. doi: 10.1016/j.jngse. 2020.103671.
  • [4] Haeseldonckx D., D’haeseleer W.: The use of the natural-gas pipeline infrastructure for hydrogen transport in a changing market structure, Int. J. Hydrogen Energ. 32(2007), 1381–1386. doi: 10.1016/j.ijhydene.2006.10.018.
  • [5] Jiang J., Zhang H., Ji B., Yi F., Yan F., Liu X.: Numerical investigation on sealing performance of drainage pipeline inspection gauge crossing pipeline elbows. Energy Sci. Eng. 00(2021), 1–14. doi: 10.1002/ese3.955.
  • [6] Nykyforchyn H., Unigovskyi L., Zvirko O., Tsyrulnyk O., Krechkovska H.: Pipeline durability and integrity issues at hydrogen transport via natural gas distribution network. Proced. Struct. Integ. 33(2021), 646–651. doi: 10.1016/j.prostr.2021.10.
  • [7] Witek M., Batura A., Orynyak I., Borodii M.: An integrated risk assessment of onshore gas transmission pipelines based on defect population. Eng. Struct. 173(2018), 150–165. doi: 10.1016/j.engstruct.2018.06.092.
  • [8] Witek M.: Structural integrity of steel pipeline with clusters of corrosion defect. Materials 14(2021), 852, 1–15. doi: 10.3390/ma14040852.
  • [9] Witek, M.; Uilhoorn F.E.: Influence of gas transmission network failure on security of supply. J. Nat. Gas Sci. Eng. 90(2021), 103877. doi: 10.1016/j.jngse.2021.103877.
  • [10] Witek M., Possibilities of using X80, X100, X120 high strength steels for onshore gas transmission pipelines. J. Nat. Gas Sci. Eng. 27(2015), 374–384. doi: 10.1016/j.jngse.2015.08.074.
  • [11] Zhou D., Li T., Huang D. Wu Y. Huang Z., Xiao W., Wang Q., Wang X.: The experiment study to assess the impact of hydrogen blended natural gas on the tensile properties and damage mechanism of X80 pipeline steel. Int. J. Hydrogen Energ. 46(2021), 10, 7402–7414. doi: 10.1016/j.ijhydene.2020.11.267.
  • [12] www.siemens.com (accessed 27 Nov. 2021).
  • [13] www.solarturbines.com (accessed 27 Nov. 2021).
  • [14] Uilhoorn F.E.: Comparison of Bayesian estimation methods for modeling flow transients in gas pipelines. J. Nat. Gas Sci. Eng. 38(2017), 159–170.
  • [15] Kunz O., Wagner W.: The GERG-2008 Wide-Range equation of state for natural gases and other mixtures: An expansion of GERG-2004. J. Chem. Eng. Data 11(2012), 3032–3091.
  • [16] Roe P.L.: Characteristic-based schemes for the Euler equations. Ann. Rev. Fluid Mech. 18 (1986), 337–365.
  • [17] Uilhoorn F.E.: Dynamic behaviour of non-isothermal compressible natural gases mixed with hydrogen in pipelines. Int. J. Hydrogen Energ. 34(2019), 6722–6729.
  • [18] Barrera O., Bombac D., Chen Y., Daff T.D., Galindo-Nava E, Gong P., Haley D., Horton R., Katzarov I., Kermode J.R., Liverani C., Stopher M., Sweeney F.: Understanding and mitigating hydrogen embrittlement of steels: a review of experimental, modelling and design progress from atomistic to continuum. J. Mater. Sci. 53(2018), 6251–6290.
  • [19] Cazenave P., Jimenez K., Gao M., Moneta A., Hryciuk, P.: Hydrogen assisted cracking driven by cathodic protection operated at near – 1200 mV CSE – an onshore natural gas pipeline failure. J. Pipeline Sci. Eng. 1(2021), 100–121.
  • [20] Vaccariello E., Trinchero R., Stievano I.S., Leone P.: A statistical assessment of blending hydrogen into gas networks. Energies 14(2021). doi: 10.3390/en14165055.
  • [21] Elaoud S., Zahreddine Hafsi Z., Hadj-Taieb L.: Numerical modelling of hydrogennatural gas mixtures flows in looped networks. J. Petrol. Sci. Eng. 159(2017), 532– 541. doi: 10.1016/j.petrol.2017.09.063.
  • [22] Pellegrino S., Lanzini A., Pierluigi L.: Greening the gas network – The need for modelling the distributed injection of alternative fuels. Renew. Sust. Energ. Rev. 70(2017), 266–286. doi: 10.1016/j.rser.2016.11.243.
  • [23] Witek M, Uilhoorn F.: A data assimilation approach for estimating strength of steel pipes reinforced with composite sleeves under unsteady pressure-flow conditions. Arch. Thermodyn. 41(2020), 4, 3–22. doi: 10.24425/ather.2020.135852.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f623e1f2-f5c1-46a8-a1ee-cea15a90abb8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.