Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Increased CO2 emissions have resulted in extreme climatic variations and as the forecast is that the global temperature will hit its highest-ever level in the next five years. This comes at a time when there is an urgent need for effective and smooth means of reducing greenhouse gas emissions. Geological Sequestration of Carbon (GCS) is a new alternative: the effective and safe storage of CO2 underground. The most critical part of the process is the leakage assessment and geological formation safety as a long-term sink of CO2. Caprock is important in this process as an efficient long-time sequester for CO2, as it is more permeable to CO2 than geological reservoirs. Of all the other processes involved in trapping, the most effective in the immediate phase after the injection of CO2 is capillary trapping. The CO2 remains stored under the caprock until the critical pressure that initiates movement is achieved. Traditional methods, such as mercury intrusion porosimetry and core flooding experiments, do not tend to be replicated correctly in-situ and often complicate the process. Measurements made in such a manner usually overestimate threshold pressures for one of many reasons, be it late flow signal recognition in the low permeability of caprocks or incompletely saturated cores. For these purposes, in-situ-type novel equipment was developed for easy and direct capillary pressure measurement, core saturation, and effortless reproduction of in-situ conditions at higher pressures. This new technique measures the pressure in the outflow directly, so the values of threshold pressure it gives are very exact.
Czasopismo
Rocznik
Tom
Strony
5--9
Opis fizyczny
Bibliogr. 6 poz., rys., tab., wykr.
Twórcy
autor
- AGH University of Krakow, Faculty of Drilling, Oil and Gas, al. A. Mickiewicza 30, 30-059 Krakow, Poland
autor
- Institute of Rock Mechanics of the Polish Academy of Sciences, Laboratory of Micrometrics, ul. W. Reymonta 27, 30-059 Krakow, Poland
Bibliografia
- [1] Hermanson L., Smith D., Seabrook M., Bilbao R., Doblas-Reyes F., Tourigny E., Lapin V., Kharin V.V., Merryfield W.J., Sospedra-Alfonso R. et al.: WMO global annual to decadal climate update: A prediction for 2021–25. Bulletin of the American Meteorological Society, 103(4), 2022, pp. E1117–E1129.
- [2] Ho A., Fokker P.A.: Orlic B.: Caprock Integrity of Deep Saline Reservoirs and Coupled Processes. Netherlands Institute of Applied Geoscience TNO – National Geological Survey. Tech. rep. 2005. Available online: https://co2-cato.org/publish/pages/3391/_20090917_123324_5-1-2-05_coupled_processes_tno.pdf [10.02.2024].
- [3] Chiquet P., Broseta D. Thibeau S.: Wettability alteration of caprock minerals by carbon dioxide. Geofluids, 7(2), 2007, pp. 112–122.
- [4] Boulin P.F., Bretonnier P., Vassil V., Samouillet A., Fleury M., Lombard J.M.: Sealing efficiency of caprocks: Experimental investigation of entry pressure measurement methods. Marine and Petroleum Geology, 48, 2013, pp. 20–30.
- [5] Busch A., Muller N.: Determining CO2 /brine relative permeability and capillary threshold pressures for reservoir rocks and caprocks: Recommendations for development of standard laboratory protocols. Energy Procedia, 4, 2011, pp. 6053–6060.
- [6] Ito D., Akaku K., Okabe T., Takahashi T., Tsuji T.: Measurement of threshold capillary pressure for seal rocks using the step-by-step approach and the residual pressure approach. Energy Procedia, 4, 2011, pp. 5211–5218.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f61e066a-fdd5-4989-8b07-13e2f8623fdf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.