Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Laboratory waste that is disposed of into the environment will have an impact on environmental pollution and threaten human health. Efforts to treat laboratory wastewater must be carried out. This research aimed to analyze the effectiveness of Anaerobic Bioaccumulation Systems with sulfate-reducing bacteria (SRB) in reducing heavy metals and sulfate ions as well as the effectiveness of plant biofiltration (PB) in reducing biological oxygen demand (BOD), chemical oxygen demand (COD) and heavy metals in laboratory wastewater compared to quality standards. In this research, a plant biosystem which uses the principle of phytoremediation was used to reduce the heavy metal content in wastewater. This anaerobic reactor is cylindrical with r of 0.23 m and t of 0.93 m and has a volume of 1.5 m3 . In this tank, there is an SRB initial growth column with a volume 6.7 L. SRB media in the form of 30% compost fermentation solution, Postgate B nutrients with 10% sulfate added to the column. It stimulated with SRB seeds that had been isolated previously, then laboratory waste is added until it fills the column. After being acclimatized for 15 days, the laboratory wastewater began to flow slowly into anaerobic bioaccumulation system. The next stage was a plant filtration system in a size of basin 3.0x1.0x1.0 m with of 4 vertical layers. The bottom layer consists of 20% limestone, 30% coral and 50% sand. The plant used was Sansevieria trifasciata. The research results showed that the SRB Anaerobic Bioaccumulation was effective in reducing heavy metals and sulfate ions by up to 80.6% with a residence time of 24 hours after growing SRB for 15 days PB is effective in reducing BOD, COD and heavy metal content to meet the specified quality standards with a residence time of 30 hours after plant acclimatization for 15 days. The combination of the SRB anaerobic accumulation and PB system worked effectively with a total residence time of 2.25 days, which was marked by a decrease in all test parameters to below the specified quality standards.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
197--204
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
autor
- Chemistry Departement, Faculty of Mathematics and Natural Sciences, Udayana University, Indonesia
autor
- Student in the Environmental Science Doctoral Program at Udayana University, Indonesia
- Chemistry Departement, Faculty of Mathematics and Natural Sciences, Universitas Pendidikan Ganesha. Indonesia
autor
- Chemistry Departement, Faculty of Mathematics and Natural Sciences, Udayana University, Indonesia
Bibliografia
- 1. Alwi N.A., Asmawati, Liong S. 2018 Phytoaccumulation of chromium (VI) metal ion by snake plant (Sansevieria tifasciata Prain). Indonesia Chimica Acta. 11(2): 1–10.
- 2. Mosivand, S., Kazeminezhad, I., Fathabad, S.P. 2019. Easy, fast, and efficient removal of heavy metals from laboratory and real wastewater using electrocrystalized iron nanostructures. Microchem. J., 146; 534–543.
- 3. Hendrasari, R.S. 2016. Kajian Penurunan Kadar BOD Limbah Cair Tahu Pada Berbagai Variasi Aliran. Jurnal Ilmiah Semesta Teknika, 19(1), 26–36.
- 4. Fitri, H.M., Hadiwidodo, M., Kholiq, M.A. 2016. Penurunan Kadar COD, BOD, dan TSS pada Limbah Cair Industri MSG (Monosodium glutamat) dengan Biofilter Anaerob Media Bio-Ball. Jurnal Teknik Lingkungan, 5(1), 1–5.
- 5. Francis A., Sosamony K.J. 2016. Treatment of pre-treated textile wastewater using moving bed bio-film reactor. Procedia Technology. https://doi.org/10.1016/j.protcy.2016.05.033
- 6. Goni, P., Mangangka, I.R., Sompie, O.B.A. 2021 Evaluasi Kinerja Instalasi Pengolahan Air Limbah (IPAL) Rumah Sakit Umum Pusat Prof. Dr. R.D. Kandau Manado. Tekno, 19(77), 35–40.
- 7. Neria-González, M.I., Aguilar-López, R. 2021. Heavy Metal Removal Processes by Sulfate-Reducing Bacteria. In: R. Prasad (Eds.), Environmental Pollution and Remediation. Springer, 367-394.
- 8. Indrawan, F., Oktiawan, W., Zaman, B. 2017. Pengaruh Rasio Panjang dan Jarak Antar Plate Settler Terhadap Efisiensi Penyisihan Total Suspended Solids (TSS) pada Reaktor Sedimentasi Rectangular. Jurnal Teknik Lingkungan, 6(2), 1–9.
- 9. Jałowiecki, Ł., Borgulat, J., Strugała-Wilczek, A. 2024. Searching of phenol-degrading bacteria in raw wastewater from underground coal gasification process as suitable candidates in bioaugmentation approach. Journal of Ecological Engineering 25(2), 62–71.
- 10. Kuroda K., Chosei T., Nakahara N., Hatamoto M., Wakabayashi T., Kawai T., Araki N., Syutsubo K., Yamaguchi T. 2015. High organic loading treatment for industrial molasses wastewater and microbial community shifts corresponding to system development. Bioresour. Technol., 196, 225– 234,. PMID:26241842. https://doi.org/10.1016/j.biortech.2015.07.070
- 11. Nasoetion, P., Diah Ayu, W.S., Saputra, M., Ergantara, R.I. 2017. Evaluasi dan Redesign Instalasi Pengolahan Air Limbah (IPAL) RS Pertamina Bintang Amin Bandar Lampung. Jurnal Rekayasa, Teknologi, dan Sains 1(2), 75–86.
- 12. Quan L.L., Huang J., Jicheng Q., Yuling Z. 2018 Isolation of different azo dye decolorizing bacteria and their decolorization mechanisms. Nature Environment and Pollution Technology 17(3), 981-986.
- 13. Ratnawati, R., al Kholif, M., Sugito, S. 2014. Desain Instalasi Pengolahan Air Limbah (IPAL) Biofilter Untuk Mengolah Air Limbah Poliklinik UNIPA Surabaya. Waktu: Jurnal Teknik UNIPA, 12(2), 73–82. https://doi.org/10.36456/waktu.v12i2.915
- 14. Regulation of the Minister of Environment and Forestry of the Republic of Indonesia Number 5, 2021, Regarding Quality Standards for waste water disposal and utility activities.
- 15. Ryanita P.K.Y., Arsana I.N., Juliasih N.K.A. 2020. Phytoremediation using water plants for processing domestic waste water. Widya Biologi 11(2), 76-89.
- 16. Said, N.I., Utomo, K. 2018. Pengolahan Air Limbah Domestik dengan Proses Lumpur Aktif yang Diisi dengan Media Bio-ball. Jurnal Air Indonesia, 3(2). https://doi.org/10.29122/jai.v3i2.2337
- 17. Sarwono, E., Azis, W.A., Widarti, B.N. 2017. Pengaruh Variasi Waktu Tinggal terhadap Kadar BOD, COD, dan TSS pada Pengolahan Lindi TPA Bukit Pinang Samarinda Menggunakan Sistem Aerasi Bertingkat dan Sedimentasi. Jurnal Teknologi Lingkungan, 1(2), 20–26.
- 18. Saunders A.M., Albertsen M., Vollertsen J., Nielsen P.H. 2016. The activated sludge ecosystem contains a core community of abundant organisms. The ISME Journal, 10(1), 11–20. https://doi.org/10.1038/ismej.2015.117
- 19. Tangahu, B.V., Putri, A.P. 2017. The degradation f bod and cod of batik industry wastewater using egeria densa and salvinia molesta. Jurnal Sains dan Teknologi Lingkungan, 9(2), 82–91.
- 20. Yuniarti, D.P., Komala, R., Aziz, S. 2019. Pengaruh Proses Aerasi terhadap Pengolahan Limbah Cair Pabrik Kelapa Sawit di Ptpn Vii Secara Aerobik. Jurnal Redoks, 4(2), 8–16.
- 21. Yusuf, A.S.A., Panca, N.F. 2019. Pengaruh Penambahan NPK dalam Pendegradasian Limbah Cair Kelapa Sawit Menggunakan Biofiltrasi Anaerob dengan Reaktor Fixed- Bed. Indonesian Journal of Chemical Sciences, 8(3), 192–196.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f61d396c-91ed-4454-97a1-74041f92605b