PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analytical versus experimental investigation of physical and mechanical characteristics of stir cast hybrid aluminium nanocomposite

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Aluminium alloys have good mechanical and physical properties and are lightweight, easy to cast, and simple to machine. Aluminium alloys are widely used in the aviation industry, auto sector, defence sector, and structural industries because of their promising abilities. The fundamental aim of this study was to investigate the mechanical properties and physical characteristics of a stir cast hybrid aluminium nanocomposite reinforced with 1-3 wt.% cerium oxide (CeO2) and graphene nanoplatelets (GNPs). Utilizing SEM, microstructural analysis was carried out. The existence of the elements of the reinforcement in the manufactured nanocomposite specimens was verified using EDAX. With an increase in the reinforcement wt.%, improvements in the mechanical and physical properties were seen. In the hybrid nanocomposites reinforced with 3 wt.% GNPs and 3 wt.% CeO2, a low porosity of 1.06% was observed. The best results for tensile strength, yield strength, and microhardness were 398 MPa, 247 MPa, and 119.6 HV, respectively. The SEM micrographs of the studied materials showed that the reinforcement particles were uniformly dispersed and refined into ultrafine grains.
Rocznik
Strony
136--144
Opis fizyczny
Bibliogr. 62 poz., rys., tab.
Twórcy
autor
  • Mechanical Engineering Department, NIT Kurukshetra, Haryana-136119, India
autor
  • Mechanical Engineering Department, NIT Kurukshetra, Haryana-136119, India
autor
  • Mechanical Engineering Department, NIT Kurukshetra, Haryana-136119, India
Bibliografia
  • [1] Kumar D., Singh S., Angra S., Effect of reinforcements on mechanical and tribological behavior of magnesium-based composites: a review, Mater. Phys. Mech. 2022, 50, 3, 439-458, DOI: 10.18149/MPM.5032022.
  • [2] Aravind Senan V.R., Anandakrishnan G., Rahul S.R., Reghunath N., Shankar K.V., An investigation on the impact of SiC/B4C on the mechanical properties of Al6.6Si-0.4Mg alloy, Mater. Today Proc. 2019, 26, 649-653, DOI: 10.1016/j.matpr.2019.12.359.
  • [3] Kumar D., Angra S., Singh S., Mechanical properties and wear behaviour of stir cast aluminum metal matrix composite: A review, Int. J. Eng. Trans. A Basics 2022, 35, 4, 794-801, DOI: 10.5829/IJE.2022.35.04A.19.
  • [4] Kumar S., Kumar A., Vanitha C., Corrosion behaviour of Al 7075/TiC composites processed through friction stir processing, Mater. Today Proc. 2019, 15, 21-29, DOI: 10.1016/j.matpr.2019.05.019.
  • [5] Gordo E. et al., Corrosion and tribocorrosion behavior of Tialumina composites, Key Eng. Mater. 2016, 704, 28-37, DOI: 10.4028/www.scientific.net/KEM.704.28.
  • [6] Singh S., Angra S., Experimental evaluation of hygrothermal degradation of stainless steel fibre metal laminate, Eng. Sci. Technol. an Int. J. 2018, 21, 1, 170-179, DOI: 10.1016/j.jestch.2018.01.002.
  • [7] Kumar H., Kumar V., Kumar D., Singh S., Wear behavior of friction stir processed copper-cerium oxide surface, Composites. Theory and Practice 2023, 10, 1, 78-84.
  • [8] Kumar D., Singh S., Angra S., Morphology and corrosion behavior of stir-cast Al6061-CeO2 nanocomposite immersed in NaCl and H2SO4 solutions, Evergreen 2023, 10, 1, 94-104.
  • [9] Ramanathan A., Krishnan P.K., Muraliraja R., A review on the production of metal matrix composites through stir casting - Furnace design, properties, challenges, and research opportunities, J. Manuf. Process. 2019, 42, April, 213-245, DOI: 10.1016/j.jmapro.2019.04.017.
  • [10] Tamuly R., Behl A., Borkar H., Effect of addition of grain refiner and modifier on microstructural and mechanical properties of squeeze cast A356 alloy, Trans. Indian Inst. Met. 2022, DOI: 10.1007/s12666-022-02607-4.
  • [11] Gudimetla A., Lingaraju D., Prasad S.S., Investigation of mechanical and tribological behavior of Al 4032-SiHGM MMC, Composites. Theory and Practice 2020, 4, 142-156.
  • [12] Murugan S.S., Velmurugan V.J.M., Mechanical properties of SiC, Al2O3 reinforced aluminium 6061-T6 hybrid matrix composite, J. Inst. Eng. Ser. D 2018, 99, 1, 71-77, DOI: 10.1007/s40033-017-0142-3.
  • [13] Weiss D., 50 years of foundry-produced metal matrix composites and future opportunities, Int. J. Met. 2019, 14, 291-317, DOI: 10.1007/s40962-019-00375-4.
  • [14] Kareem A., Qudeiri J.A., Abdudeen A., Ahammed T., Ziout A., A review on aa 6061 metal matrix composites produced by stir casting, Materials 2021, 14, 1, 1-22, DOI: 10.3390/ma14010175.
  • [15] Satnam Singh D.K., Angra S., Optimization of hardness and tensile strength of stir cast hybrid aluminum metal matrix composite using grey relational analysis, International Conference on Computational Modelling, Simulation and Optimization (ICCMSO) 2022, 132-136.
  • [16] Khanna V., Kumar V., Anil S., Mechanical properties of aluminium-graphene/carbon nanotubes (CNTs) metal matrix composites: Advancement, opportunities and perspective, Mater. Res. Bull. 2021, 138, January, 111224, DOI: 10.1016/j.materresbull.2021.111224.
  • [17] Reddy M.P. et al., Enhancing thermal and mechanical response of aluminum using nanolength scale TiC ceramic reinforcement, Ceram. Int. 2018, January, 0-1, DOI: 10.1016/j.ceramint.2018.02.135.
  • [18] Bandil K., Vashisth H., Kumar S., Verma L., Jamwal A., Kumar D., Microstructural, mechanical and corrosion behaviour of Al-Si alloy reinforced with SiC metal matrix composite, Journal of Composite Materials 2019, 53, 28-30, DOI: 10.1177/0021998319856679.
  • [19] Saravanan C., Subramanian K., Krishnan V.A., Narayanan R.S., Effect of particulate reinforced aluminium metal matrix composite - A review, Mechanics and Mechanical Engineering 2015, 19, 1, 23-30.
  • [20] Ranjan U., Dwivedi S.P., Pandey D., Kumar R., Garg T.K., A critical review on the utilization of SAC and eggshell in the development of aluminium based composite material, Mater. Today Proc. 2021, 47, 3839-3844, DOI: 10.1016/j.matpr.2021.03.179.
  • [21] Gowrishankar T.P., Manjunatha L.H., Sangmesh B., Mechanical and wear behaviour of Al6061 reinforced with graphite and TiC hybrid MMC’s, Mater. Res. Innov. 2020, 24, 3, 1-7, DOI: 10.1080/14328917.2019.1628497.
  • [22] Alaneme K.K., Bodunrin M.O., Corrosion behavior of alumina reinforced aluminium (6063) metal matrix composites, Journal of Minerals & Materials Characterization & Engineering 2011, 10, 12, 1153-1165.
  • [23] Bright Singh R.L., Jinu G.R., Manoj M., Perumal A.E., Tribological behaviour of Al8090-SiC metal matrix composites with dissimilar B4C addition, Silicon 2022, 14, 8895-8908, 0123456789, DOI: 10.1007/s12633-021-01608-0.
  • [24] Hamada M.L., Alwan G.S., Annaz A.A., Irhayyim S.S., Hammood H.S., Experimental investigation of mechanical and tribological characteristics of Al 2024 matrix composite reinforced by yttrium oxide particles, Korean Journal of Materials Research 2021, 31, 6, 339-344.
  • [25] Abedinzadeh R., Safavi S.M., Karimzadeh F., A study of pressureless microwave sintering, microwave-assisted hot press sintering and conventional hot pressing on properties of aluminium/alumina nanocomposite, J. Mech. Sci. Technol. 2016, 30, 5, 1967-1972, DOI: 10.1007/s12206- 016-0402-4.
  • [26] Awad M., Hassan N.M., Kannan S., Mechanical properties of melt infiltration and powder metallurgy fabricated aluminum metal matrix composite, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2021, 235, 13, 2093-2107, DOI: 10.1177/09544054211015956.
  • [27] Adebiyi D.I., Popoola A.P.I., Mitigation of abrasive wear damage of Ti-6Al-4V by laser surface alloying, J. Mater. 2015, 74, 67-75, DOI: 10.1016/j.matdes.2015.02.010.
  • [28] Annaz A.A., Irhayyim S.S., Hamada M.L., Hammood H.S., Comparative study of mechanical performance between Al -graphite and Cu - graphite self-lubricating composites reinforced by nano-Ag particles, AIMS Materials Science 2020, 7, June, 534-551, DOI: 10.3934/matersci.2020.5.534.
  • [29] Hammood H.S., Mahmood A.S., Irhayyim S.S., Effect of graphite particles on physical and mechanical properties of nickel matrix composite, Periodicals of Engineering and Natural Sciences 2019, 7, 3, 1318-1328.
  • [30] Irhayyim S.S., Hammood H.S., Mahdi A.D., Mechanical and wear properties of hybrid aluminum matrix composite reinforced with graphite and nano MgO particles prepared by powder metallurgy technique, AIMS Materials Science 2020, 7, December, 103-115, DOI: 10.3934/matersci.2020. 1.103.
  • [31] Irhayyim S.S., Hammood H.S., Abdulhadi H.A., Effect of nano-TiO2 particles on mechanical performance of Al-CNT matrix composite, AIMS Materials Science 2019, 6, September, 1124-1134, DOI: 10.3934/matersci.2019.6.1124.
  • [32] Ujah C., Popoola P., Popoola O., Aigbodion V., Enhanced mechanical, electrical and corrosion characteristics of Al-CNTs-Nb composite processed via spark plasma sintering for conductor core, Journal of Composite Materials 2019, 53(26-27), 002199831984805, DOI: 10.1177/00219 98319848055.
  • [33] Ajenifuja E., Odetola P., Popoola A.P.I., Popoola O., Spark plasma sintering and structural analysis of nickeltitanium/coconut shell powder metal matrix composites, Int. J. Adv. Manuf. Technol. 2020, 108, 11-12, 3465-3473, DOI: 10.1007/s00170-020-05634-x.
  • [34] Ujah C.O., Popoola A.P.I., Popoola O.M., Aigbodion V.S., Influence of CNTs addition on the mechanical, microstructural, and corrosion properties of Al alloy using spark plasma sintering technique, The International Journal of Advanced Manufacturing Technology 106(12), 2020, 2961-2969.
  • [35] Cahoon J.R., The determination of yield strength from hardness measurements, Metallurgical Transactions 1971, 2, 1979-1983.
  • [36] Abe J.O., Popoola O.M., Popoola A.P.I., Ajenifuja E., Adebiyi D.I., Application of Taguchi design method for optimization of spark plasma sintering process parameters for Ti-6Al-4V/h-BN binary composite, Engineering Research Express 2019, 1(2).
  • [37] Callister W.D., Rethwisch D.G., Materials Science and Engineering: An Introduction, Willey, 2018.
  • [38] Kumar V., Kumar V., Singh R., Parametric study of aluminium-rare earth based composites with improved hydrophobicity using response surface method, Integr. Med. Res. 2020, 9, 3, 4919-4932, DOI: 10.1016/j.jmrt.2020. 03.011.
  • [39] Rajabi M., Khodai M.M., Askari N., Microwave-assisted sintering of Al-ZrO2 nano-composites, Journal of Materials Science: Materials in Electronics 25(10), 2014, June, 4577-4584, DOI: 10.1007/s10854-014-2206-6.
  • [40] Dhekwar B.T., Mohanty A., Pradhan J., Nayak S., Investigation of mechanical properties of aluminium silicon carbide hybride metal matrix composite (Mmcs), International Journal of Research in Engineering and Science 2017, 5, 4, 88-105.
  • [41] Reddy P.V., Ramanjaneyulu P., Reddy B.V., Rao P.S., Simultaneous optimization of drilling responses using GRA on Al-6063/TiC composite, SN Appl. Sci. 2020, 2, 3, 1-10, DOI: 10.1007/s42452-020-2214-5.
  • [42] Sumankant Y., Jawalkar C.S., Verma A.S., Suri N.M., Fabrication of aluminium metal matrix composites with particulate reinforcement: A review, Mater. Today Proc. 2017, 4, 2, 2927-2936, DOI: 10.1016/j.matpr.2017.02.174.
  • [43] Saravanan C. et al., Investigation on the mechanical, tribological, morphological and machinability behavior of stir-casted Al/SiC/Mo reinforced MMCs, Mater. Today Proc. 2020, 21, 1-10, DOI: 10.1016/j.ceramint.2020.01.192.
  • [44] Hugar N. et al., Fabrication and characterization of high performance aluminium composites for automotive components, AIP Conf. Proc. 2022, 2421, 1-8, DOI: 10.1063/5.0076769.
  • [45] Yeshiye T., Gizaw M., A review on effects of reinforcements on properties and wear behaviour of aluminium metal matrix material, International Journal of Research in Engineering Technology 2021, 6, 2, March, 1-17.
  • [46] Mohammadpour M., Azari Khosroshahi R., Taherzadeh Mousavian R., Brabazon D., Effect of interfacial-active elements addition on the incorporation of micron-sized SiC particles in molten pure aluminum, Ceram. Int. 2014, 40, 6, 8323-8332, DOI: 10.1016/j.ceramint.2014.01.038.
  • [47] Kumar D., Angra S., Singh S., High-temperature dry sliding wear behavior of hybrid aluminum composite reinforced with ceria and graphene nanoparticles, Eng. Fail Anal. 2023, 151, May, 107426, DOI: 10.1016/j.engfailanal.2023.107426
  • [48] Prakash B., Sivananthan S., Vijayan V., Investigation on mechanical properties of Al6061 alloy - Multiwall carbon nanotubes reinforced composites by powder metallurgy route, Mater. Today Proc. 2020, 37(15-16), 4-8, DOI: 10.1016/j.matpr.2020.04.907.
  • [49] Sharma V.K., Kumar V., Joshi R.S., Investigation of rare earth particulate on tribological and mechanical properties of Al-6061 alloy composites for aerospace application, Integr. Med. Res. 2019, 8, 4, 3504-3516, DOI: 10.1016/ j.jmrt.2019.06.025.
  • [50] Baradeswaran A., Elaya Perumal A., Study on mechanical and wear properties of Al 7075/Al2O3 /graphite hybrid composites, Compos. Part B Eng. 2014, 56, 464-471, DOI: 10.1016/j.compositesb.2013.08.013.
  • [51] Saravanan M., Pillai R.M., Ravi K.R., Pai B.C., Brahmakumar M., Development of ultrafine grain aluminiumgraphite metal matrix composite by equal channel angular pressing, Compos. Sci. Technol. 2007, 67, 6, 1275-1279, DOI: 10.1016/j.compscitech.2006.10.003.
  • [52] Lata S., Pandey A., Sharma A., Meena K., An experimental study and analysis of the mechanical properties of titanium dioxide reinforced aluminum (AA 5051) composite, Mater. Today Proc. 2018, 5, 2, 6090-6097, DOI: 10.1016/ j.matpr.2017.12.214.
  • [53] Amouri K., Kazemi S., Momeni A., Kazazi M., Microstructure and mechanical properties of Al-nano/micro SiC composites produced by stir casting technique, Mater. Sci. Eng. A 2016, 674, 569-578, DOI: 10.1016/ j.msea.2016. 08.027.
  • [54] Abdizadeh H., Baghchesara M.A., Investigation into the mechanical properties and fracture behavior of A356 aluminum alloy-based ZrO2 -particle-reinforced metal--matrix composites, Mech. Compos. Mater. 2013, 49, 5, 571-576, DOI: 10.1007/s11029-013-9373-z.
  • [55] Moharana G.B., Senapati A.K., Tribological analysis of Al- Si alloy based MMCs at elevated temperature, Mater. Today Proc. 2021, 49, 1749-1755, DOI: 10.1016/ j.matpr.2021.08.008.
  • [56] Ali M., Review of stir casting technique and technical challenges for ceramic reinforcement particulate and aluminium matrix composites, Epa - J. Silic Based Compos. Mater. 2020, 72, 6, 198-204, DOI: 10.14382/epitoanyagjsbcm.2020.32.
  • [57] Munasir N., Triwikantoro T., Zainuri M., Bäßler R., Darminto D., Corrosion polarization behavior of Al-SiO2 composites in 1M and related microstructural analysis, Int. J. Eng. 2019, 32, 7, 982-990, DOI: 10.5829/ije.2019. 32.07a.11.
  • [58] Bhoi N.K., Singh H., Pratap S., Jain P.K., Aluminum yttrium oxide metal matrix composite synthesized by microwave hybrid sintering: processing, microstructure and mechanical response, J. Inorg. Organomet. Polym. Mater. 2022, DOI: 10.1007/s10904-021-02195-8.
  • [59] Sharma V.K., Kumar V., Joshi R.S., Experimental investigation on effect of RE oxides addition on tribological and mechanical properties of Al-6063 based hybrid composites Experimental investigation on effect of RE oxides addition on tribological and mechanical properties of Al-6063 based h, Mater. Res. Express 2019, 6, 8, 0865d7, DOI: 10.1088/ 2053-1591/ab2504.
  • [60] Kumar D., Singh S., Angra S., Dry sliding wear and microstructural behavior of stir-cast Al6061-based composite reinforced with cerium oxide and graphene nanoplatelets, Wear 2022, 516-517, September, 204615, DOI: 10.1016/j.wear.2022.204615.
  • [61] Bannigidad P., Aluminium oxide (Al2O3 ) nanopore image analysis using digital image processing techniques, 2017 Int. Conf. Comput. Commun. Control Autom., 1-4.
  • [62] Krishnamurthy K., Ashebre M., Venkatesh J., Suresha B., Dry sliding wear behavior of aluminum 6063 composites reinforced with TiB2 particles, Journal of Minerals and Materials Characterization and Engineering 2017, 05(02), 74-89, DOI: 10.4236/jmmce.2017.52007.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f6131ab1-e268-411d-8772-0cf703ebf2bd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.