PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Normal ordering associated with λ-Stirling numbers in λ-shift algebra

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
It is known that the Stirling numbers of the second kind are related to normal ordering in the Weyl algebra, while the unsigned Stirling numbers of the first kind are related to normal ordering in the shift algebra. Recently, Kim-Kim introduced a λ-analogue of the unsigned Stirling numbers of the first kind and that of the r-Stirling numbers of the first kind. In this article, we introduce a λ-analogue of the shift algebra (called λ-shift algebra) and investigate normal ordering in the λ-shift algebra. From the normal ordering in the λ-shift algebra, we derive some identities about the λ-analogue of the unsigned Stirling numbers of the first kind.
Wydawca
Rocznik
Strony
art. no. 20220250
Opis fizyczny
Bibliogr. 25 poz.
Twórcy
autor
  • Department of Mathematics, Kwangwoon University, Seoul 139-701, Republic of Korea
autor
  • Department of Mathematics, Sogang University, Seoul 121-742, Republic of Korea
  • Department of Mathematics Education, Daegu Catholic University, Gyeongsan 38430, Republic of Korea
Bibliografia
  • [1] T. Kim and D. S. Kim, Some identities on λ-analogues of r-Stirling numbers of the first kind, Filomat 34 (2020), no. 2, 451–460.
  • [2] L. Carlitz, Degenerate Stirling, Bernoulli and Eulerian numbers, Utilitas Math. 15 (1979), 51–88.
  • [3] L. Comtet, Advanced Combinatorics. The Art of Finite and Infinite Expansions, Revised and Enlarged Edition, D. Reidel Publishing Co., Dordrecht, 1974.
  • [4] R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics. A Foundation for Computer Science, 2nd edition, Addison-Wesley Publishing Company, Reading, MA, 1994.
  • [5] S. Roman, The umbral calculus, Pure and Applied Mathematics, vol. 111, Academic Press, Inc. [Harcourt Brace Jovanovich Publishers], New York, 1984.
  • [6] E. T. Whittaker and G. N. Watson, A Course of Modern Analysis. An introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions, Reprint of the fourth (1927) edition. Cambridge Mathematical Library. Cambridge University Press, Cambridge, 1996.
  • [7] A. Z. Broder, The r-Stirling numbers, Discrete Math. 49 (1984), no. 3, 241–259, DOI: https://doi.org/10.1016/0012-365X (84)90161-4.
  • [8] P. Blasiak and P. Flajolet, Combinatorial models of creation-annihilation, Sem. Lothar. Combin. 65 (2010/12), Art. B65c, 78 pp.
  • [9] A. Boukas, Stochastic control of operator-valued processes in boson Fock space, Russian J. Math. Phys. 4 (1996), no. 2, 139–150.
  • [10] J. Katriel, Combinatorial aspects of boson algebra, Lettere al Nuovo Ciment, 10 (1974), 565–567, DOI: https://doi.org/10.1007/BF02784783.
  • [11] J. Katriel, On a generalized recurrence for Bell numbers, J. Integer Seq. 11 (2008), no. 3, Article no. 08.3.8, 4 pp.
  • [12] J. Katriel, Bell numbers and coherent states, Physics Letters A 273 (2000), no. 3, 159–161, DOI: https://doi.org/10.1016/S0375-9601(00)00488-6.
  • [13] V. V. Kucherenko and V. P. Maslov, Reduction of the quadratic Bose operator to normal form, Dokl. Akad. Nauk 350 (1996), no. 2, 162–165.
  • [14] T. Kim and D. S. Kim, Some Identities on Degenerate r-Stirling Numbers via Boson Operators, Russ. J. Math. Phys. 29 (2022), no. 4, 508–517, DOI: https://doi.org/10.1134/S1061920822040094.
  • [15] T. Kim and D. S. Kim, Degenerate r -Whitney numbers and degenerate r -Dowling polynomials via boson operators, Adv. Appl. Math. 140 (2022), Paper no. 102394, 21 pp, DOI: https://doi.org/10.1016/j.aam.2022.
  • [16] T. Kim, D. S. Kim, and H. K. Kim, Normal ordering of degenerate integral powers of number operator and its applications, Appl. Math. Sci. Eng. 30 (2022), no. 1, 440–447, DOI: https://doi.org/10.1080/27690911.2022.2083120.
  • [17] T. Kim, D. S. Kim, and H. K. Kim, Degenerate r -Bell polynomials arising from degenerate normal ordering, J. Math. 2022 (2022), Art. ID 2626249, 6 pp, DOI: https://doi.org/10.1155/2022/2626249.
  • [18] T. Kim and D. S. Kim, Some identities involving degenerate Stirling numbers associated with several degenerate polynomials and numbers, Russ. J. Math. Phys. 30 (2023), no. 1, 62–75, DOI: https://doi.org/10.1134/S1061920823010041.
  • [19] I. Mező, The dual of Spivey’s Bell number formula, J. Integer Seq. 15 (2012), no. 2, Article no. 12.2.4, 5 pp.
  • [20] A. M. Navon, Combinatorics and fermion algebra, Nuovo Cimento 16B (1973), 324–330, DOI: https://doi.org/10.1007/BF02828687.
  • [21] A. Perelomov, Generalized coherent states and their applications, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1986.
  • [22] M. Schork, Normal ordering in the shift algebra and dual of Spivey’s identity, Quaest. Math. 46 (2023), no. 1, 173–180, DOI: https://doi.org/10.2989/16073606.2021.2012722.
  • [23] A. Varvak, Rook numbers and the normal ordering problem, J. Combin. Theory Ser. A 112 (2005), no. 2, 292–307, DOI: https://doi.org/10.1016/j.jcta.2005.07.012.
  • [24] M. Z. Spivey, A generalized recurrence for Bell numbers, J. Integer Seq. 11 (2008), no. 2, Article no. 08.2.5, 3 pp.
  • [25] D. S. Kim, T. Kim, J. Kwon, S.-H. Lee, and S. Park, On λ-linear functionals arising from p-adic integrals on Zp, Adv. Difference Equ. 2021 (2021), Paper No. 479, 12 pp, DOI: https://doi.org/10.1186/s13662-021-03634-z.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f6124850-bdd2-469d-a460-2fe84895420f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.