SOME PROPERTIES OF OPENLY @-CONTINUOUS FUNCTIONS

KATARZYNA NOWAKOWSKA

Abstract

In the paper we present definition and some properties of openly ϱ-upper continuous functions. Connections with ϱ-upper continuous and porouscontinuous functions are studied.

1. Preliminaries

In the paper we apply standard symbols and notations. By \mathbb{R} we denote the set of all real numbers, by \mathbb{N} we denote the set of all positive integers. The symbol $\lambda(\cdot)$ stands for the Lebesgue measure on \mathbb{R}. By int A we denote the interior of a set A. In the whole paper $I=(a, b)$ is an open interval (not necessarily bounded) and f is a real-valued function defined on I. By $f \mid A$ we denote the restriction of f to a set $A \subset I$. Symbol $|J|$ stands for length of a interval J.

Let E be a measurable subset of \mathbb{R} and let $x \in \mathbb{R}$. According to [4], the numbers

$$
\underline{d}^{+}(E, x)=\liminf _{t \rightarrow 0^{+}} \frac{\lambda(E \cap[x, x+t])}{t}
$$

and

$$
\bar{d}^{+}(E, x)=\limsup _{t \rightarrow 0^{+}} \frac{\lambda(E \cap[x, x+t])}{t}
$$

are called the right lower density of E at x and right upper density of E at x, respectively. The left lower and left upper densities of E at x are defined analogously. If

$$
\underline{d}^{+}(E, x)=\bar{d}^{+}(E, x) \quad\left(\underline{d}^{-}(E, x)=\bar{d}^{-}(E, x)\right)
$$

then we call these numbers the right density (left density) of E at x and denote it by $d^{+}(E, x)\left(d^{-}(E, x)\right)$. The numbers

$$
\bar{d}(E, x)=\max \left\{\bar{d}^{+}(E, x), \bar{d}^{-}(E, x)\right\}
$$

and

$$
\underline{d}(E, x)=\min \left\{\underline{d}^{+}(E, x), \underline{d}^{-}(E, x)\right\}
$$

are called the upper and lower density of E at x, respectively.
If $\bar{d}(E, x)=\underline{d}(E, x)$ then we call this number the density of E at x and denote it by $d(E, x)$. If $d(E, x)=1$ then we say that x is a point of density of E.

First, we recall the notion of ϱ-upper continuity.
Definition 1.1. [6] Let E be a measurable subset of $\mathbb{R}, x \in \mathbb{R}$ and $0<\varrho \leq 1$. We say that x is a point of ϱ-type upper density of E if either $\bar{d}(E, x)>\varrho$ if $\varrho<1$ or $\bar{d}(E, x)=1$ if $\varrho=1$.

Definition 1.2. [6] The function $f: I \rightarrow \mathbb{R}$ is called ϱ-upper continuous at $x \in I$ provided that there is a measurable set $E \subset I$ such that x is a point of ϱ-type upper density of $E, x \in E$ and $f \mid E$ is continuous at x. If f is ϱ-upper continuous at each point of I then we say that f is ϱ-upper continuous.

By $\mathcal{U C} C_{\varrho}$ we denote the class of all ϱ-upper continuous functions defined on I, whereas the symbol $\mathcal{U C} \mathcal{C}_{\varrho}(f)$ denotes the set of all points at which the function f is ϱ-upper continuous.

In an obvious way we define one-sided ϱ-upper continuity. Obviously f is ϱ-upper continuous at x if and only if it is ϱ-upper continuous at x on the right or on the left.

Definition 1.3. [7] Let E be a measurable subset of \mathbb{R}. Let $x \in \mathbb{R}$ and $0<\varrho \leq 1$. We say that x is a point of weakly ϱ-type upper density of E if $\bar{d}(E, x) \geq \varrho$.
Definition 1.4. [7] The function $f: I \rightarrow \mathbb{R}$ is called weakly ϱ-upper continuous at $x \in I$ provided that there is a measurable set $E \subset I$ such that x is a point of weakly ϱ-type upper density of $E, x \in E$ and $\left.f\right|_{E}$ is continuous at x. If f is weakly ϱ-upper continuous at each point of I then we say that f is weakly ϱ-upper continuous.

By $w \mathcal{U C} C_{\varrho}$ we denote the class of all weakly ϱ-upper continuous functions defined on I, whereas the symbol $w \mathcal{U} \mathcal{C}_{\varrho}(f)$ denotes the set of all points at which the function f is weakly ϱ-upper continuous.

In an obvious way we define one-sided weakly ϱ-upper continuity. Observe that f is weakly ϱ-upper continuous at x if and only if it is weakly ϱ-upper continuous at x on the right or on the left.

We recall the definition of approximate continuity.
Definition 1.5. [4] The function $f: I \rightarrow \mathbb{R}$ is called approximately continuous at $x \in I$ provided that there is a measurable set $E \subset I$ such that x is
a point of density of $E, x \in E$ and $\left.f\right|_{E}$ is continuous at x. If f is approximately continuous at each point of I then we say that f is approximately continuous.

By \mathcal{A} we denote the class of all approximately continuous functions.
In [1] J. Borsík and J. Holos introduced path continuity connected with the notion of porosity. For a set $A \subset \mathbb{R}$ and an open interval $I \subset \mathbb{R}$ let $\Lambda(A, I)$ denote the length of the largest subinterval of I having an empty intersection with A. Let $x \in \mathbb{R}$. Then, according to [1], [5], the numbers

$$
p^{+}(A, x)=\limsup _{t \rightarrow 0^{+}} \frac{\Lambda(A,(x, x+t))}{t}
$$

and

$$
p^{-}(A, x)=\limsup _{t \rightarrow 0^{+}} \frac{\Lambda(A,(x-t, x))}{t}
$$

are called the right-porosity of the set A at x and the left-porosity of the set A at x, respectively. The porosity of the set A at x is defined as

$$
p(A, x)=\max \left\{p^{-}(A, x), p^{+}(A, x)\right\} .
$$

The set A is called right-porous at a point x if $p^{+}(A, x)>0$, left-porous at a point x if $p^{-}(A, x)>0$ and porous at a point x if $p(A, x)>0$. The set A is called porous if A is porous at each point $x \in A$. The set A is called strongly porous at a point x if $p^{+}(A, x)=1$ or $p^{-}(A, x)=1$.

Definition 1.6. [1] Let $r \in[0,1), A \subset \mathbb{R}, x \in A$. The point x will be called a point of π_{r}-density of the set A if $p(\mathbb{R} \backslash A, x)>r$.

Let $r \in(0,1], A \subset \mathbb{R}, x \in A$. The point $x \in A$ will be called a point of μ_{r}-density of the set A if $p(\mathbb{R} \backslash A, x) \geq r$.

Definition 1.7. [1] Let $r \in[0,1), x \in \mathbb{R}$. The function $f: \mathbb{R} \rightarrow \mathbb{R}$ will be called

1. \mathcal{P}_{r}-continuous at x if there exists a set $A \subset \mathbb{R}$ such that $x \in A, x$ is a point of π_{r}-density of A and $f \mid A$ is continuous at x,
2. \mathcal{S}_{r}-continuous at x if for each $\varepsilon>0$ there exists a set $A \subset \mathbb{R}$ such that $x \in A, x$ is a point of π_{r}-density of A and $f(A) \subset(f(x)-\varepsilon, f(x)+\varepsilon)$.
Let $r \in(0,1], x \in \mathbb{R}$. The function $f: \mathbb{R} \rightarrow \mathbb{R}$ will be called
3. \mathcal{M}_{r}-continuous at a point x if there exists a set $A \subset \mathbb{R}$ such that $x \in A$, x is a point of μ_{r}-density of A and $f \mid A$ is continuous at x,
4. \mathcal{N}_{r}-continuous at x if for each $\varepsilon>0$ there exists a set $A \subset \mathbb{R}$ such that $x \in A, x$ is a point of μ_{r}-density of A and $f(A) \subset(f(x)-\varepsilon, f(x)+\varepsilon)$.
All these functions will be called porously continuous. Symbols $\mathcal{P}_{r}(f)$, $\mathcal{S}_{r}(f), \mathcal{M}_{r}(f), \mathcal{N}_{r}(f)$ will denote the sets of all points at which the function
$f \quad$ is $\quad \mathcal{P}_{r}$-continuous, $\quad \mathcal{S}_{r}$-continuous, $\quad \mathcal{M}_{r}$-continuous, \mathcal{N}_{r}-continuous.

2. OPEN ϱ-UPPER CONTINUOUS FUNCTIONS

We define new classes of functions lying between the class of ϱ-upper continuous and the class of porously continuous functions.

Definition 2.1. Let $\varrho \in[0,1), x \in I$. The function $f: I \rightarrow \mathbb{R}$ is called

1. \mathscr{P}_{ϱ}-continuous at x if there exists an open set $U \subset \mathbb{R}$ such that $\bar{d}(U, x)>$ ϱ and $f \mid U \cup\{x\}$ is continuous at x.
2. \mathscr{S}_{ϱ}-continuous at x if for each $\varepsilon>0$ there exists an open set $U \subset I$ such that $\bar{d}(U, x)>\varrho$ and $f(U) \subset(f(x)-\varepsilon, f(x)+\varepsilon)$.
Let $\varrho \in(0,1], x \in I$. The function $f: I \rightarrow \mathbb{R}$ is called
3. \mathscr{M}_{ϱ}-continuous at x if there exists an open set $U \subset I$ such that $\bar{d}(U, x) \geq$ ϱ and $f \mid U \cup\{x\}$ is continuous at x.
4. \mathscr{N}_{ϱ}-continuous at x if for each $\varepsilon>0$ there exists an open set $U \subset \mathbb{R}$ such that $\bar{d}(U, x) \geq \varrho$ and $f(U) \subset(f(x)-\varepsilon, f(x)+\varepsilon)$.

We denote the class of all \mathscr{P}_{ϱ}-continuous, \mathscr{S}_{ϱ}-continuous, \mathscr{M}_{ϱ}-continuous, \mathscr{N}_{ϱ}-continuous by $\mathscr{P}_{\varrho}, \mathscr{S}_{\varrho}, \mathscr{M}_{\varrho}, \mathscr{N}_{\varrho}$, respectively. Symbols $\mathscr{P}_{\varrho}(f), \mathscr{S}_{\varrho}(f), \mathscr{M}_{\varrho}(f), \mathscr{N}_{\varrho}(f)$ denotes the sets of all points at which the function f is \mathscr{P}_{ϱ}-continuous, \mathscr{S}_{ϱ}-continuous, \mathscr{M}_{ϱ}-continuous, \mathscr{N}_{ϱ}-continuous, respectively.

Remark 2.1. In [3] similar functions are considered. But in the definitions $A_{r}(f)$ and $B_{r}(f)$ in [2] symmetric density is used. And there is connections between $A_{r}(f), B_{r}(f)$, ϱ-upper continuity and porouscontinuity.

Some obvious relations between sets of open ϱ-continuity of f will be described in the following propositions.

Proposition 2.1. Let $f: I \rightarrow \mathbb{R}$. Then

1. $\mathscr{P}_{\varrho_{2}}(f) \subset \mathscr{P}_{\varrho_{1}}(f)$ and $\mathscr{S}_{\varrho_{2}}(f) \subset \mathscr{S}_{\varrho_{1}}(f)$ for $0 \leq \varrho_{1}<\varrho_{2}<1$,
2. $\mathscr{M}_{\varrho_{2}}(f) \subset \mathscr{M}_{\varrho_{1}}(f)$ and $\mathscr{N}_{\varrho_{2}}(f) \subset \mathscr{N}_{\varrho_{1}}(f)$ for $0<\varrho_{1}<\varrho_{2} \leq 1$,
3. $\mathscr{P}_{\varrho}(f) \subset \mathscr{M}_{\varrho}(f)$ and $\mathscr{S}_{\varrho}(f) \subset \mathscr{N}_{\varrho}(f)$ for $0<\varrho<1$,
4. $\mathscr{M}_{\varrho_{2}}(f) \subset \mathscr{P}_{\varrho_{1}}(f)$ and $\mathscr{\varrho}_{\varrho_{2}}(f) \subset \mathscr{S}_{\varrho_{1}}(f)$ for $0 \leq \varrho_{1}<\varrho_{2} \leq 1$,
5. $\mathscr{P}_{\varrho}(f) \subset \mathscr{S}_{\varrho}(f)$ for $0 \leq \varrho<1$,
6. $\mathscr{M}_{\varrho}(f) \subset \mathscr{N}_{\varrho}(f)$ for $0<\varrho \leq 1$.

Proposition 2.2. Let $f: I \rightarrow \mathbb{R}, \varrho \in[0,1)$. Then $\mathscr{P}_{\varrho}(f) \subset \mathcal{U C}_{\varrho}(f)$.
Proposition 2.3. Let $f: I \rightarrow \mathbb{R}, \varrho \in(0,1]$. Then $\mathscr{M}_{\varrho}(f) \subset u \mathcal{U C} \mathcal{C}_{\varrho}(f)$.
The following two propositions follow directly from the definitions.

Proposition 2.4. Let $\varrho \in[0,1), x \in I$. If $f: I \rightarrow \mathbb{R}$ is continuous at x from the left or from the right then $x \in \mathscr{S}_{\varrho}(f) \cap \mathscr{P}_{\varrho}(f)$.

Proposition 2.5. Let $\varrho \in(0,1], x \in I$. If $f: I \rightarrow \mathbb{R}$ is continuous at x from the left or from the right then $x \in \mathscr{N}_{\varrho}(f) \cap \mathscr{M}_{\varrho}(f)$.

We will show that approximate continuity does not imply any open ϱ upper continuity. To this end we need well known theorem of Zahorski.

Theorem 2.1. [4] Let E be a set of F_{σ} type such that $d(E, x)=1$ for all $x \in E$. There exists an approximately continuous function $f: E \rightarrow \mathbb{R}$ such that $0<f(x) \leq 1$ for all $x \in E$ and $f(x)=0$ for all $x \notin E$. Then the function f is also upper semi-continuous.
Example 2.1. We will give an example of approximately continuous function which does not belong to \mathscr{S}_{0}.

Let $E \subset \mathbb{R}$ be nowhere dense closed set with positive Lebesgue measure. Let $L(E)$ be a set of density points of E. Then $\lambda(L(E))=\lambda(E)$, by Lebesgue Density Theorem [4]. Let $F \subset L(E)$ be a set of F_{σ} type such that $\lambda(F)=\lambda(L(E))$. Then $F \subset L(F)$. By Theorem 2.1, there exists an approximately continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(x) \in(0,1]$ for all $x \in F$ and $f(x)=0$ for all $x \in \mathbb{R} \backslash F$. Let $x_{0} \in F$, so $f\left(x_{0}\right)>0$. For all $0<\varepsilon<f\left(x_{0}\right)$ we have

$$
\left\{x:\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon\right\} \subset F .
$$

The set F is nowhere dense, so $\operatorname{int}\left\{x:\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon\right\}=\emptyset$. Hence f is not \mathscr{S}_{0}-continuous at x_{0}.

The class of all weakly ϱ-upper continuous functions consists the class of all Lebesgue measurable functions [7], so all considered classes of functions $\mathscr{P}_{\varrho}, \mathscr{S}_{\varrho}, \mathscr{M}_{\varrho}, \mathscr{N}_{\varrho}$ consist the class of all Lebesgue measurable functions.

Lemma 2.1. Let $U \subset \mathbb{R}$ be open set, $x_{0} \in \mathbb{R}$. Then

$$
\bar{d}\left(U, x_{0}\right) \geq p\left(\mathbb{R} \backslash U, x_{0}\right)
$$

Proof. Let $p\left(\mathbb{R} \backslash U, x_{0}\right)=c$. Then $p^{+}\left(\mathbb{R} \backslash U, x_{0}\right)=c$ or $p^{-}\left(\mathbb{R} \backslash U, x_{0}\right)=c$. Without loss of generality we may assume that $p^{+}\left(\mathbb{R} \backslash U, x_{0}\right)=c$. Therefore there is decreasing sequence $\left\{h_{n}\right\}_{n \geq 1}$ of positive numbers such that $\lim _{n \rightarrow \infty} h_{n}=0$ and

$$
p^{+}\left(\mathbb{R} \backslash U, x_{0}\right)=\lim _{n \rightarrow \infty} \frac{\Lambda\left(\mathbb{R} \backslash U,\left(x_{0}, x_{0}+h_{n}\right)\right)}{h_{n}} .
$$

Therefore there is a sequence of open intervals $\left\{I_{n}\right\}_{n \geq 1}$ such that $I_{n} \cap(\mathbb{R} \backslash$ $U)=\emptyset$ and $\left|I_{n}\right|=\Lambda\left(\mathbb{R} \backslash U,\left(x_{0}, x_{0}+h_{n}\right)\right)$. Then $I_{n} \subset U$ for each $n \geq 1$
and

$$
\begin{aligned}
& \bar{d}\left(U, x_{0}\right) \geq \bar{d}^{+}\left(U, x_{0}\right) \geq \bar{d}\left(\bigcup_{k \geq 1} I_{k}, x_{0}\right) \geq \\
& \geq \limsup _{n \rightarrow \infty} \frac{\lambda\left(\bigcup_{k \geq 1} I_{k} \cap\left[x_{0}, x_{0}+h_{n}\right]\right)}{h_{n}}= \\
&=\limsup _{n \rightarrow \infty} \frac{\lambda\left(\bigcup_{k \geq n} I_{k}\right)}{h_{n}} \geq \limsup _{n \rightarrow \infty} \frac{\lambda\left(I_{n}\right)}{h_{n}}= \\
&=\limsup _{n \rightarrow \infty} \frac{\Lambda\left(\mathbb{R} \backslash U,\left(x_{0}, x_{0}+h_{n}\right)\right)}{h_{n}}=p^{+}\left(\mathbb{R} \backslash U, x_{0}\right)=p\left(\mathbb{R} \backslash U, x_{0}\right) .
\end{aligned}
$$

The next theorem follows immediately from Lemma 2.1
Theorem 2.2. Let $f: I \rightarrow \mathbb{R}$. Then

1. $\mathcal{P}_{\varrho}(f) \subset \mathscr{P}_{\varrho}(f)$ for $\varrho \in[0,1)$,
2. $\mathcal{S}_{\varrho}(f) \subset \mathscr{S}_{\varrho}(f)$ for $\varrho \in[0,1)$,
3. $\mathcal{M}_{\varrho}(f) \subset \mathscr{M}_{\varrho}(f)$ for $\varrho \in(0,1]$,
4. $\mathcal{N}_{\varrho}(f) \subset \mathscr{N}_{\varrho}(f)$ for $\varrho \in(0,1]$.

We will show, in the next example, that all inclusions in Theorem 2.2 are proper.

Example 2.2. We will construct $f \in \mathscr{M}_{1}$ such that $0 \notin \mathcal{S}_{0}(f)$, e.g. $\mathscr{M}_{1}(f) \backslash$ $\mathcal{S}_{0}(f) \neq \emptyset$.

Let $\left\{x_{n}\right\}_{n \geq 1}$ be a decreasing sequence of positive numbers such that $\lim _{n \rightarrow \infty} x_{n}=0, x_{n}-x_{n+1} \geq x_{n+1}-x_{n+2}$ and $\lim _{n \rightarrow \infty} \frac{x_{n}-x_{n+1}}{x_{n+1}}=0$ (for example, $\left.x_{n}=\frac{1}{n}\right)$. Let $y_{n}, z_{n} \in\left(x_{n+1}, x_{n}\right)$ be such that $x_{n}-z_{n}=\frac{1}{n+5}\left(x_{n}-x_{n+1}\right)$, $y_{n}-x_{n+1}=\frac{1}{n+5}\left(x_{n}-x_{n+1}\right)$. Thus $x_{n+1}<y_{n}<z_{n}<x_{n}$ for each $n \geq 1$. Notice that $z_{n}-y_{n}=\frac{n+3}{n+5}\left(x_{n}-x_{n+1}\right)$ for each $n \geq 1$.. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by

$$
f(x)=\left\{\begin{array}{cl}
0 & \text { if } x \in \bigcup_{n=1}^{\infty}\left[y_{n}, z_{n}\right] \cup\{0\}, \\
1 & \text { if } x \in(0, \infty) \backslash \bigcup_{n=1}^{\infty}\left[y_{n}, z_{n}\right], \\
f(-x) & \text { if } x \in(\infty, 0)
\end{array}\right.
$$

Obviously, at each $x \neq 0$ the function f is continuous from the right or from the left, and therefore $\mathbb{R} \backslash\{0\} \subset \mathscr{M}_{1}(f)$. Let $U=\bigcup_{n=1}^{\infty}\left(y_{n}, z_{n}\right)$. Then for
each $n \geq 1$ we have

$$
\begin{aligned}
\frac{\lambda\left(U \cap\left[0, x_{n}\right]\right)}{x_{n}} & =\frac{\sum_{k=n}^{\infty} \lambda\left(\left[y_{k}, z_{k}\right]\right)}{x_{n}} \geq \frac{\sum_{k=n}^{\infty} \frac{k+5}{k+7}\left(x_{k}-x_{k+1}\right)}{y_{n}} \geq \\
& \geq \frac{\sum_{n+5}^{n+7}\left(x_{k}-x_{k+1}\right)}{y_{n}}=\frac{n+5}{n+7} \frac{x_{n}}{x_{n}}=\frac{n+5}{n+7} .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
d(U, 0) & =d^{+}(U, 0) \geq \liminf _{n \rightarrow \infty} \frac{\lambda\left(U \cap\left[0, y_{n}\right]\right)}{y_{n}}=\liminf _{n \rightarrow \infty} \frac{\lambda\left(U \cap\left[0, x_{n}\right]\right)}{y_{n}} \geq \\
& \geq \liminf _{n \rightarrow \infty} \frac{n+5}{n+7}=1 .
\end{aligned}
$$

Hence $d(U, 0)=1$ and f is approximately continuous at 0 . Moreover, U is open, so $0 \in \mathscr{M}_{1}(f)$.

For each $\varepsilon \in(0,1), \mathbb{R} \backslash\{x:|f(x)-f(0)|<\varepsilon\} \subset \mathbb{R} \backslash \bigcup_{n=1}^{\infty}\left\{x_{n}\right\}$. Let $h \in\left[x_{n+1}, x_{n}\right]$. Since $\frac{\Lambda\left(\mathbb{R} \backslash \bigcup_{n=1}^{\infty}\left\{x_{n}\right\},(0, h)\right.}{h} \leq \frac{x_{n}-x_{n+1}}{x_{n+1}}$ and $\lim _{n \rightarrow \infty} \frac{x_{n}-x_{n+1}}{x_{n+1}}=0$, we deduce

$$
p(\mathbb{R} \backslash\{x:|f(x)-f(0)|<\varepsilon\}, 0)=\lim _{h \rightarrow 0^{+}} \frac{\Lambda\left(\mathbb{R} \backslash \bigcup_{n=1}^{\infty}\left\{x_{n}\right\},(0, h)\right)}{h}=0 .
$$

Thus $0 \notin \mathcal{S}_{0}(f)$.
Lemma 2.2. Let $\varrho \in[0,1]$ and $x \in \mathbb{R}$. Let $\left\{E_{n}: n \in \mathbb{N}\right\}$ be a descending family of open sets such that $x \in \bigcap_{n=1}^{\infty} E_{n}, \bar{d}\left(E_{n}, x\right) \geq \varrho$ for $n \geq 1$. Then there exists an open set E such that $\bar{d}(E, x) \geq \varrho$ and for every positive integer n there exists $\delta_{n}>0$ such that $E \cap\left(x-\delta_{n}, x+\delta_{n}\right) \subset E_{n}$.

Proof. By assumptions, $\bar{d}\left(E_{n}, x\right) \geq \varrho$ for $n \geq 1$. Therefore $\bar{d}^{+}\left(E_{n}, x\right) \geq \varrho$ or $\bar{d}^{-}\left(E_{n}, x\right) \geq \varrho$ for each n. Hence there exists an infinite family $\left\{E_{n_{k}}: k \in \mathbb{N}\right\}$ such that $\bar{d}^{+}\left(E_{n_{k}}, x\right) \geq \varrho$ for all $k \geq 1$ or $\bar{d}^{-}\left(E_{n_{k}}, x\right) \geq \varrho$ for all $k \geq 1$. Without loss of generality we may assume that the first possibility occurs. Then $\bar{d}^{+}\left(E_{n}, x\right) \geq \varrho$ for all $n \geq 1$, because $\left\{E_{n}: n \in \mathbb{N}\right\}$ is a descending family.

We shall construct inductively a decreasing sequence $\left\{x_{n}\right\}_{n \geq 1}$ converging to x such that

$$
\begin{equation*}
\frac{\lambda\left(E_{n} \cap\left[x_{n+1}, x_{n}\right]\right)}{x_{n}-x}>\varrho\left(1-\frac{1}{2^{n}}\right) \quad \text { for } n \geq 1 . \tag{1}
\end{equation*}
$$

Let $x_{1}>x$ be any point for which $\frac{\lambda\left(E_{1} \cap\left[x, x_{1}\right]\right)}{x_{1}-x}>\varrho\left(1-\frac{1}{2}\right)$ and $x_{1}-x<$ 1. Next, we can find $x_{2} \in\left(x, x_{1}\right)$ such that $\frac{\lambda\left(E_{1} \cap\left[x_{2}, x_{1}\right]\right)}{x_{1}-x}>\varrho\left(1-\frac{1}{2}\right)$, $\frac{\lambda\left(E_{2} \cap\left[x, x_{2}\right]\right)}{x_{2}-x}>\varrho\left(1-\frac{1}{4}\right)$ and $x_{2}-x<\frac{1}{2}$. There exists $x<x_{3}<x_{2}$ for which $\frac{\lambda\left(E_{2} \cap\left[x_{3}, x_{2}\right]\right)}{x_{2}-x}>\varrho\left(1-\frac{1}{4}\right), \frac{\lambda\left(E_{3} \cap\left[x, x_{3}\right]\right)}{x_{3}-x}>\varrho\left(1-\frac{1}{8}\right)$ and $x_{3}-x<\frac{1}{3}$.

Assume that points $x_{1}, x_{2}, \ldots, x_{n}$ with properties $x<x_{n}<\ldots<x_{1}$, $\frac{\lambda\left(E_{i-1} \cap\left[x_{i}, x_{i-1}\right]\right)}{x_{i-1}-x}>\varrho\left(1-\frac{1}{2^{i-1}}\right)$ for $i \in\{2, \ldots, n\}, \frac{\lambda\left(E_{i} \cap\left[x, x_{i}\right]\right)}{x_{i}-x}>\varrho\left(1-\frac{1}{2^{i}}\right)$ and $x_{i}-x<\frac{1}{i}$ for $i \in\{1,2, \ldots, n\}$ are chosen. Then there exists $x<x_{n+1}<$ x_{n} such that $\frac{\lambda\left(E_{n} \cap\left[x_{n+1}, x_{n}\right]\right)}{x_{n}-x}>\varrho\left(1-\frac{1}{2^{n}}\right), \frac{\lambda\left(E_{n+1} \cap\left[x, x_{n+1}\right]\right)}{x_{n+1}-x}>\varrho\left(1-\frac{1}{2^{n+1}}\right)$ and $x_{n+1}-x<\frac{1}{n+1}$.
Thus we have constructed inductively the sequence $\left\{x_{n}\right\}_{n \geq 1}$ satisfying condition (1).

Let $E=\bigcup_{n=1}^{\infty}\left(E_{n} \cap\left(x_{n+1}, x_{n}\right)\right)$. Obviously, E is open. Since

$$
\begin{aligned}
\limsup _{n \rightarrow \infty} \frac{\lambda\left(E \cap\left[x, x_{n}\right]\right)}{x_{n}-x} \geq \limsup _{n \rightarrow \infty} \frac{\lambda\left(E_{n} \cap\left[x_{n+1}, x_{n}\right]\right)}{x_{n}-x} & \geq \\
& \geq \lim _{n \rightarrow \infty} \varrho\left(1-\frac{1}{2^{n}}\right)=\varrho,
\end{aligned}
$$

we obtain $\bar{d}(E, x) \geq \varrho$.
By the definition of the set E, for each n there exists $\delta_{n}=x_{n}-x>0$ such that $E \cap\left(x-\delta_{n}, x+\delta_{n}\right)=E \cap\left[x, x_{n}\right) \subset E_{n}$. The proof is completed.

Theorem 2.3. Let $f: I \rightarrow \mathbb{R}$ and $\varrho \in(0,1]$. Then $\mathscr{M}_{\varrho}(f)=\mathscr{N}_{\varrho}(f)$.
Proof. From Proposition 2.1 it is clear that it is sufficient to show $\mathscr{N}_{\varrho}(f) \subset$ $\mathscr{M}_{\varrho}(f)$. Let $x_{0} \in \mathscr{N}_{\varrho}(f)$. Then for each positive integer n there is an open set E_{n} such that $\bar{d}\left(E_{n}, x_{0}\right) \geq \varrho$ and $f\left(E_{n}\right) \subset\left(f\left(x_{0}\right)-\frac{1}{n}, f\left(x_{0}\right)+\frac{1}{n}\right)$. By Lemma 2.2 for sets E_{n}, we can construct an open set E such that $\bar{d}\left(E, x_{0}\right) \geq$ ϱ and for each n there exists $\delta_{n}>0$ for which $E \cap\left(x_{0}-\delta_{n}, x_{0}+\delta_{n}\right) \subset E_{n}$. The last condition implies that $f \mid E \cup\left\{x_{0}\right\}$ is continuous at x_{0}. Thus $x_{0} \in$ $\mathscr{M}_{\varrho}(f)$.
Theorem 2.4. Let $\varrho \in[0,1), f: I \rightarrow \mathbb{R}, x_{0} \in I$. Then $x_{0} \in \mathscr{P}_{\varrho}(f)$ if and only if

$$
\lim _{\varepsilon \rightarrow 0^{+}} \bar{d}\left(\operatorname{int}\left\{x:\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon\right\}, x_{0}\right)>\varrho .
$$

Proof. Assume that f is \mathscr{P}_{ϱ}-continuous at x_{0}. Let $U \subset I$ be an open set such that $\bar{d}\left(U, x_{0}\right)>\varrho$ and $f \mid U \cup\left\{x_{0}\right\}$ is continuous at x_{0}. Let $\varepsilon>$ 0 . Since $f \mid U \cup\left\{x_{0}\right\}$ is continuous at x_{0}, we can find $\delta>0$ such that $\left(x_{0}-\delta, x_{0}+\delta\right) \cap U \subset\left\{x:\left|f\left(x_{0}\right)-f(x)\right|<\varepsilon\right\}$. Hence

$$
\begin{aligned}
\bar{d}\left(\left\{x \in I: \mid f\left(x_{0}\right)-\right.\right. & \left.f(x) \mid<\varepsilon\}, x_{0}\right) \geq \\
& \geq \bar{d}\left(\operatorname{int}\left\{x \in U:\left|f\left(x_{0}\right)-f(x)\right|<\varepsilon\right\}, x_{0}\right)=\bar{d}\left(U, x_{0}\right)
\end{aligned}
$$

for each $\varepsilon>0$. Therefore

$$
\lim _{\varepsilon \rightarrow 0^{+}} \bar{d}\left(\operatorname{int}\left\{x \in I:\left|f\left(x_{0}\right)-f(x)\right|<\varepsilon\right\}, x_{0}\right) \geq \bar{d}\left(U, x_{0}\right)>\varrho .
$$

Finally, assume that

$$
\varrho_{1}=\lim _{\varepsilon \rightarrow 0^{+}} \bar{d}\left(\operatorname{int}\left\{x \in I:\left|f\left(x_{0}\right)-f(x)\right|<\varepsilon\right\}, x_{0}\right)>\varrho .
$$

Using Lemma 2.2 for sets $E_{n}=\left\{x \in I:\left|f\left(x_{0}\right)-f(x)\right|<\frac{1}{n}\right\}$ we can construct an open set U such that $\bar{d}\left(U, x_{0}\right) \geq \varrho_{1}>\varrho$ and for each n there exists $\delta_{n}>0$ for which $U \cap\left(x_{0}-\delta_{n}, x_{0}+\delta_{n}\right) \subset E_{n}$. The last condition implies that $\left.f\right|_{U \cup\left\{x_{0}\right\}}$ is continuous at x_{0}. It follows that f is $\mathscr{P}_{\varrho^{-}}$-continuous at x_{0}, what was to be shown.

Theorem 2.5. Let $0<\varrho_{1}<\varrho_{2}<1$ and $f: I \rightarrow \mathbb{R}$. Then

$$
\begin{aligned}
\mathscr{M}_{1}(f)=\mathscr{N}_{1}(f) \subset \mathscr{P}_{\varrho_{2}}(f) \subset & \mathscr{S}_{\varrho_{2}}(f) \subset \mathscr{M}_{\varrho_{2}}(f)= \\
& =\mathscr{N}_{\varrho_{2}}(f) \subset \mathscr{P}_{\varrho_{1}}(f) \subset \mathscr{P}_{0}(f) \subset \mathscr{S}_{0}(f) .
\end{aligned}
$$

Proof. The proof follows immediately from Proposition 2.1 and Theorem 2.3.

Theorem 2.6. Let $0<\varrho_{1}<\varrho_{2}<1$. Then

$$
\mathscr{M}_{1}=\mathscr{N}_{1} \subset \mathscr{P}_{\varrho_{2}} \subset \mathscr{S}_{\varrho_{2}} \subset \mathscr{M}_{\varrho_{2}}=\mathscr{N}_{\varrho_{2}} \subset \mathscr{P}_{\varrho_{1}} \subset \mathscr{P}_{0} \subset \mathscr{S}_{0}
$$

and all incusions are proper.
Proof. All inclusions follow from the previous theorem. We will only show (in Examples 2.3-2.5) that they are proper.

Example 2.3. Let $0 \leq \varrho_{1}<\varrho_{2} \leq 1$. We will construct $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f \in \mathscr{P}_{\varrho_{1}} \backslash \mathscr{M}_{\varrho_{2}}$.

We can find a sequence $\left\{\left[a_{n}, b_{n}\right]\right\}_{n \geq 1}$ of pairwise disjoint closed intervals such that $0<b_{n+1}<a_{n}<b_{n}$ for each n and $\bar{d}^{+}\left(\bigcup_{n=1}^{\infty}\left[a_{n}, b_{n}\right], 0\right)=\frac{\varrho_{1}+\varrho_{2}}{2}$. Denote $I_{n}=\left[a_{n}, b_{n}\right]$ for every $n \geq 1$. Define a function $f: \mathbb{R} \rightarrow \mathbb{R}$ letting

$$
f(x)= \begin{cases}0 & \text { if } x \in\{0\} \cup \bigcup_{n=1}^{\infty} I_{n}, \\ 1 & \text { if } x \in(-\infty, 0) \cup \bigcup_{n=1}^{\infty}\left(b_{n+1}, a_{n}\right) \cup\left(b_{1}, \infty\right) .\end{cases}
$$

The function f is continuous from the left or from the right at every point except 0 . Hence $\mathbb{R} \backslash\{0\} \subset \mathscr{P}_{\varrho_{1}}(f)$. If $E=\bigcup_{n=1}^{\infty}\left(a_{n}, b_{n}\right)$ then E is open and the function f restricted to $E \cup\{0\}$ is constant, so in particular, it is continuous at zero. Moreover,

$$
\bar{d}(E, 0)=\bar{d}^{+}\left(\bigcup_{n=1}^{\infty}\left(a_{n}, b_{n}\right), 0\right)=\bar{d}^{+}\left(\bigcup_{n=1}^{\infty} I_{n}, 0\right)=\frac{\varrho_{1}+\varrho_{2}}{2}>\varrho_{1} .
$$

Hence $0 \in \mathscr{P}_{\varrho_{1}}(f)$ and $f \in \mathscr{P}_{\varrho_{1}}$.
But

$$
\bar{d}^{+}(\{x: f(x)<1\}, 0)=\bar{d}^{+}\left(\bigcup_{n=1}^{\infty} I_{n}, 0\right)=\frac{\varrho_{1}+\varrho_{2}}{2}<\varrho_{2} .
$$

Moreover $\bar{d}^{-}(\{x: f(x)<1\}, 0)=0$. Hence $\bar{d}(\{x: f(x)<1\}, 0)<\varrho_{2}$ and f is not $\mathscr{M}_{\varrho_{2}}$-continuous at 0 . Therefore $0 \notin \mathscr{M}_{\varrho_{2}}(f)$ and $f \notin \mathscr{M}_{\varrho_{2}}$.

Example 2.4. Let $\varrho \in(0,1)$. We will construct $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f \in \mathscr{M}_{\varrho} \backslash \mathscr{S}_{\varrho}$.

We can find a sequence $\left\{\left[a_{n}, b_{n}\right]\right\}_{n \geq 1}$ of pairwise disjoint closed intervals such that $0<b_{n+1}<a_{n}<b_{n}$ for each n and $\bar{d}^{+}\left(\bigcup_{n=1}^{\infty}\left[a_{n}, b_{n}\right], 0\right)=\varrho$. Define a function $f: \mathbb{R} \rightarrow \mathbb{R}$ letting

$$
f(x)= \begin{cases}0 & \text { if } x \in\{0\} \cup \bigcup_{n=1}^{\infty}\left[a_{n}, b_{n}\right], \\ 1 & \text { if } x \in(-\infty, 0) \cup \bigcup_{n=1}^{\infty}\left(b_{n+1}, a_{n}\right) \cup\left[b_{1}, \infty\right) .\end{cases}
$$

Observe that the function f is continuous from the left or from the right at every point except 0 . Hence $\mathbb{R} \backslash\{0\} \subset \mathscr{M}_{\varrho}(f)$. Denote $E=\bigcup_{n=1}^{\infty}\left(a_{n}, b_{n}\right)$. Then the function $f \mid E \cup\{0\}$ is constant, so in particular, it is continuous at zero. Moreover,

$$
\bar{d}(E, 0) \geq \bar{d}^{+}(E, 0)=\bar{d}^{+}\left(\bigcup_{n=1}^{\infty}\left[a_{n}, b_{n}\right], 0\right)=\varrho .
$$

Hence $0 \in \mathscr{M}_{\varrho}(f)$ and $f \in \mathscr{M} \varrho$.

Let $\varepsilon \in(0,1)$. Since

$$
\bar{d}(\{x:|f(x)-f(0)|<\varepsilon\}, 0)=\bar{d}^{+}\left(\bigcup_{n=1}^{\infty}\left[a_{n}, b_{n}\right], 0\right)=\varrho
$$

we conclude that $0 \notin \mathscr{S}_{\varrho}(f)$ and $f \notin \mathscr{S}_{\varrho}$.
Example 2.5. Let $\varrho \in[0,1)$. We will construct $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f \in \mathscr{S}_{\varrho} \backslash \mathscr{P}_{\varrho}$.

We can find a sequence $\left\{\left[a_{n}, b_{n}\right]\right\}_{n \geq 1}$ of pairwise disjoint closed intervals such that $0<b_{n+1}<a_{n}<b_{n}$ for each n and $\bar{d}^{+}\left(\bigcup_{n=1}^{\infty}\left[a_{n}, b_{n}\right], 0\right)=\varrho$. Define a function $f: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
f(x)=\left\{\begin{array}{cl}
0 & \text { if } x \in\{0\} \cup\left(b_{1}, \infty\right) \cup \bigcup_{n=1}^{\infty}\left[a_{n}, b_{n}\right), \\
1 & \text { if } x \in(-\infty, 0) \cup \bigcup_{n=2}^{\infty}\left\{b_{n}\right\}, \\
\frac{a_{n}-x}{a_{n}-b_{n+1}} & \text { if } x \in\left(b_{n+1}, a_{n}\right), n \geq 1 .
\end{array}\right.
$$

The function f is continuous from the right at every point except 0 . Hence $\mathbb{R} \backslash\{0\} \subset \mathscr{S}_{\rho}(f)$. Let $U_{\varepsilon}=\{x:|f(x)-f(0)|<\varepsilon\} \backslash\{0\}$ for each $\varepsilon>0$. Then $U_{\varepsilon}=\bigcup_{n=1}^{\infty}\left(a_{n}-\varepsilon\left(a_{n}-b_{n+1}\right), b_{n}\right)$. Hence U_{ε} is open. Moreover,

$$
\begin{aligned}
\bar{d}\left(U_{\varepsilon}, 0\right) & =\bar{d}^{+}\left(\bigcup_{n=1}^{\infty}\left(a_{n}-\varepsilon\left(a_{n}-b_{n+1}\right), b_{n}\right), 0\right)= \\
& =\limsup _{n \rightarrow \infty} \frac{\sum_{k=n}^{\infty}\left(b_{k}-a_{k}+\varepsilon\left(a_{k}-b_{k+1}\right)\right)}{b_{n}}= \\
& =\limsup _{n \rightarrow \infty} \frac{\sum_{k=n}^{\infty}\left((1-\varepsilon)\left(b_{k}-a_{k}\right)+\varepsilon\left(b_{k}-b_{k+1}\right)\right)}{b_{n}}= \\
& =\limsup _{n \rightarrow \infty}\left((1-\varepsilon) \frac{\sum_{k=n}^{\infty}\left(b_{k}-a_{k}\right)}{b_{n}}+\varepsilon \frac{b_{n}}{b_{n}}\right)= \\
& =(1-\varepsilon) \varrho+\varepsilon>\varrho .
\end{aligned}
$$

Therefore $0 \in \mathscr{S}_{\varrho}(f)$ and $f \in \mathscr{S}_{\varrho}$.
On the other hand,

$$
\begin{aligned}
& \lim _{\varepsilon \rightarrow 0^{+}} \bar{d}(\operatorname{int}\{x:|f(x)-f(0)|>\varepsilon\}, 0)= \\
& =\lim _{\varepsilon \rightarrow 0^{+}} \bar{d}^{+}\left(\bigcup_{n=1}^{\infty}\left(a_{n}-\varepsilon\left(a_{n}-b_{n+1}\right), b_{n}\right), 0\right)=\lim _{\varepsilon \rightarrow 0^{+}}((1-\varepsilon) \varrho+\varepsilon)=\varrho .
\end{aligned}
$$

Hence $0 \notin \mathscr{P}_{\varrho}(f)$ and $f \notin \mathscr{P}_{\varrho}$, by Theorem 2.4.

References

[1] J. Borsík, J. Holos, Some properties of porouscontinuous fucntions, Math. Slovaca 64 (2014), No. 3, 741-750.
[2] J. Borsík, Some classes of strongly quasicontinuous functions, Real Anal. Exchange 30 (2004-2005) 689-702.
[3] J. Borsík, Quasicontinuous functions with small set of discontinuity points, Modern Real Analysis, Lódź University Press, Lodz 2015, 11-26.
[4] A. M. Bruckner, Differentiation of Real Functions, Lecture Notes in Mathematics, Vol. 659, Springer-Verlag Berlin Heidelberg New York, 1978.
[5] E. P. Dolženko, Boundary properties of arbitrary functions, Math. USSR Izv. 31 (1967), 3-14 (in Russian).
[6] S. Kowalczyk, K. Nowakowska, A note on ϱ-upper continuous functions, Tatra Mt. Math. Publ. 44 (2009), 153-158.
[7] K. Nowakowska, M. Turowska, A note on weakly ϱ-upper continuous functions, Jan Długosz University of Częstochowa, Scientific Issuse, Mathematics XIX (2014,) 195206.

Received: September 2016
Katarzyna Nowakowska
Pomeranian University in Seupsk,
Institute of Mathematics,
ul. Kozietulskiego 6-7, 76-200 Seupsk, Poland
E-mail address: nowakowska_k@go2.pl

