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SOME PROPERTIES OF OPENLY %-CONTINUOUS
FUNCTIONS

KATARZYNA NOWAKOWSKA

Abstract

In the paper we present definition and some properties of openly %-upper continuous
functions. Connections with %-upper continuous and porouscontinuous functions are
studied.

1. Preliminaries

In the paper we apply standard symbols and notations. By R we denote
the set of all real numbers, by N we denote the set of all positive integers.
The symbol λ(·) stands for the Lebesgue measure on R. By intA we denote
the interior of a set A. In the whole paper I = (a, b) is an open interval
(not necessarily bounded) and f is a real-valued function defined on I. By
f |A we denote the restriction of f to a set A ⊂ I. Symbol |J | stands for
length of a interval J .

Let E be a measurable subset of R and let x ∈ R. According to [4], the
numbers

d+(E, x) = lim inf
t→0+

λ(E ∩ [x, x+ t])

t
and

d
+

(E, x) = lim sup
t→0+

λ(E ∩ [x, x+ t])

t

are called the right lower density of E at x and right upper density of E at
x, respectively. The left lower and left upper densities of E at x are defined
analogously. If

d+(E, x) = d
+

(E, x)
(
d−(E, x) = d

−
(E, x)

)
then we call these numbers the right density (left density) of E at x and
denote it by d+(E, x) (d−(E, x)). The numbers

d(E, x) = max{d+
(E, x), d

−
(E, x)}
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and
d(E, x) = min{d+(E, x), d−(E, x)}

are called the upper and lower density of E at x, respectively.
If d(E, x) = d(E, x) then we call this number the density of E at x and

denote it by d(E, x). If d(E, x) = 1 then we say that x is a point of density
of E.

First, we recall the notion of %-upper continuity.

Definition 1.1. [6] LetE be a measurable subset of R, x ∈ R and 0 < % ≤ 1.
We say that x is a point of %-type upper density of E if either d(E, x) > %
if % < 1 or d(E, x) = 1 if % = 1.

Definition 1.2. [6] The function f : I → R is called %-upper continuous
at x ∈ I provided that there is a measurable set E ⊂ I such that x is a
point of %-type upper density of E, x ∈ E and f |E is continuous at x. If
f is %-upper continuous at each point of I then we say that f is %-upper
continuous.

By UC% we denote the class of all %-upper continuous functions defined
on I, whereas the symbol UC%(f) denotes the set of all points at which the
function f is %-upper continuous.

In an obvious way we define one-sided %-upper continuity. Obviously f
is %-upper continuous at x if and only if it is %-upper continuous at x on
the right or on the left.

Definition 1.3. [7] Let E be a measurable subset of R. Let x ∈ R and
0 < % ≤ 1. We say that x is a point of weakly %-type upper density of E if
d(E, x) ≥ %.

Definition 1.4. [7] The function f : I → R is called weakly %-upper con-
tinuous at x ∈ I provided that there is a measurable set E ⊂ I such that x
is a point of weakly %-type upper density of E, x ∈ E and f |E is continuous
at x. If f is weakly %-upper continuous at each point of I then we say that
f is weakly %-upper continuous.

By wUC% we denote the class of all weakly %-upper continuous functions
defined on I, whereas the symbol wUC%(f) denotes the set of all points at
which the function f is weakly %-upper continuous.

In an obvious way we define one-sided weakly %-upper continuity. Observe
that f is weakly %-upper continuous at x if and only if it is weakly %-upper
continuous at x on the right or on the left.

We recall the definition of approximate continuity.

Definition 1.5. [4] The function f : I → R is called approximately contin-
uous at x ∈ I provided that there is a measurable set E ⊂ I such that x is
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a point of density of E, x ∈ E and f |E is continuous at x. If f is approx-
imately continuous at each point of I then we say that f is approximately
continuous.

By A we denote the class of all approximately continuous functions.
In [1] J. Borsík and J. Holos introduced path continuity connected with

the notion of porosity. For a set A ⊂ R and an open interval I ⊂ R let
Λ(A, I) denote the length of the largest subinterval of I having an empty
intersection with A. Let x ∈ R. Then, according to [1], [5], the numbers

p+(A, x) = lim sup
t→0+

Λ(A, (x, x+ t))

t

and

p−(A, x) = lim sup
t→0+

Λ(A, (x− t, x))

t

are called the right-porosity of the set A at x and the left-porosity of the
set A at x, respectively. The porosity of the set A at x is defined as

p(A, x) = max{p−(A, x), p+(A, x)}.

The set A is called right-porous at a point x if p+(A, x) > 0, left-porous at
a point x if p−(A, x) > 0 and porous at a point x if p(A, x) > 0. The set
A is called porous if A is porous at each point x ∈ A. The set A is called
strongly porous at a point x if p+(A, x) = 1 or p−(A, x) = 1.

Definition 1.6. [1] Let r ∈ [0, 1), A ⊂ R, x ∈ A. The point x will be called
a point of πr-density of the set A if p(R \A, x) > r.

Let r ∈ (0, 1], A ⊂ R, x ∈ A. The point x ∈ A will be called a point of
µr-density of the set A if p(R \A, x) ≥ r.

Definition 1.7. [1] Let r ∈ [0, 1), x ∈ R. The function f : R → R will be
called
1. Pr-continuous at x if there exists a set A ⊂ R such that x ∈ A, x is a

point of πr-density of A and f |A is continuous at x,
2. Sr-continuous at x if for each ε > 0 there exists a set A ⊂ R such that
x ∈ A, x is a point of πr-density of A and f(A) ⊂ (f(x)− ε, f(x) + ε).

Let r ∈ (0, 1], x ∈ R. The function f : R→ R will be called
3. Mr-continuous at a point x if there exists a set A ⊂ R such that x ∈ A,
x is a point of µr-density of A and f |A is continuous at x,

4. Nr-continuous at x if for each ε > 0 there exists a set A ⊂ R such that
x ∈ A, x is a point of µr-density of A and f(A) ⊂ (f(x)− ε, f(x) + ε).

All these functions will be called porously continuous. Symbols Pr(f),
Sr(f),Mr(f), Nr(f) will denote the sets of all points at which the function
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f is Pr-continuous, Sr-continuous, Mr-continuous,
Nr-continuous.

2. open %-upper continuous functions

We define new classes of functions lying between the class of %-upper
continuous and the class of porously continuous functions.

Definition 2.1. Let % ∈ [0, 1), x ∈ I. The function f : I → R is called
1. P%-continuous at x if there exists an open set U ⊂ R such that d(U, x) >
% and f |U ∪ {x} is continuous at x.

2. S%-continuous at x if for each ε > 0 there exists an open set U ⊂ I such
that d(U, x) > % and f(U) ⊂ (f(x)− ε, f(x) + ε).

Let % ∈ (0, 1], x ∈ I. The function f : I → R is called
1. M%-continuous at x if there exists an open set U ⊂ I such that d(U, x) ≥
% and f |U ∪ {x} is continuous at x.

2. N%-continuous at x if for each ε > 0 there exists an open set U ⊂ R such
that d(U, x) ≥ % and f(U) ⊂ (f(x)− ε, f(x) + ε).

We denote the class of all P%-continuous, S%-continuous,
M%-continuous, N%-continuous by P%, S%, M%, N%, respectively. Symbols
P%(f), S%(f), M%(f), N%(f) denotes the sets of all points at which the
function f is P%-continuous, S%-continuous, M%-continuous, N%-continuous,
respectively.

Remark 2.1. In [3] similar functions are considered. But in the definitions
Ar(f) and Br(f) in [2] symmetric density is used. And there is connections
between Ar(f), Br(f), %-upper continuity and porouscontinuity.

Some obvious relations between sets of open %-continuity of f will be
described in the following propositions.

Proposition 2.1. Let f : I → R. Then
1. P%2(f) ⊂P%1(f) and S%2(f) ⊂ S%1(f) for 0 ≤ %1 < %2 < 1,
2. M%2(f) ⊂M%1(f) and N%2(f) ⊂ N%1(f) for 0 < %1 < %2 ≤ 1,
3. P%(f) ⊂M%(f) and S%(f) ⊂ N%(f) for 0 < % < 1,
4. M%2(f) ⊂P%1(f) and N%2(f) ⊂ S%1(f) for 0 ≤ %1 < %2 ≤ 1,
5. P%(f) ⊂ S%(f) for 0 ≤ % < 1,
6. M%(f) ⊂ N%(f) for 0 < % ≤ 1.

Proposition 2.2. Let f : I → R, % ∈ [0, 1). Then P%(f) ⊂ UC%(f).

Proposition 2.3. Let f : I → R, % ∈ (0, 1]. Then M%(f) ⊂ wUC%(f).

The following two propositions follow directly from the definitions.
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Proposition 2.4. Let % ∈ [0, 1), x ∈ I. If f : I → R is continuous at x
from the left or from the right then x ∈ S%(f) ∩P%(f).

Proposition 2.5. Let % ∈ (0, 1], x ∈ I. If f : I → R is continuous at x
from the left or from the right then x ∈ N%(f) ∩M%(f).

We will show that approximate continuity does not imply any open %-
upper continuity. To this end we need well known theorem of Zahorski.

Theorem 2.1. [4] Let E be a set of Fσ type such that d(E, x) = 1 for all
x ∈ E. There exists an approximately continuous function f : E → R such
that 0 < f(x) ≤ 1 for all x ∈ E and f(x) = 0 for all x 6∈ E. Then the
function f is also upper semi-continuous.

Example 2.1. We will give an example of approximately continuous func-
tion which does not belong to S0.

Let E ⊂ R be nowhere dense closed set with positive Lebesgue measure.
Let L(E) be a set of density points of E. Then λ(L(E)) = λ(E), by
Lebesgue Density Theorem [4]. Let F ⊂ L(E) be a set of Fσ type such
that λ(F ) = λ(L(E)). Then F ⊂ L(F ). By Theorem 2.1, there exists an
approximately continuous function f : R→ R such that f(x) ∈ (0, 1] for all
x ∈ F and f(x) = 0 for all x ∈ R \ F . Let x0 ∈ F , so f(x0) > 0. For all
0 < ε < f(x0) we have

{x : |f(x)− f(x0)| < ε} ⊂ F.

The set F is nowhere dense, so int{x : |f(x)− f(x0)| < ε} = ∅. Hence f is
not S0-continuous at x0.

The class of all weakly %-upper continuous functions consists the class of
all Lebesgue measurable functions [7], so all considered classes of functions
P%,S%,M%, N% consist the class of all Lebesgue measurable functions.

Lemma 2.1. Let U ⊂ R be open set, x0 ∈ R. Then

d(U, x0) ≥ p(R \ U, x0).

Proof. Let p(R \ U, x0) = c. Then p+(R \ U, x0) = c or p−(R \ U, x0) = c.
Without loss of generality we may assume that p+(R \ U, x0) = c. There-
fore there is decreasing sequence {hn}n≥1 of positive numbers such that
lim
n→∞

hn = 0 and

p+(R \ U, x0) = lim
n→∞

Λ (R \ U, (x0, x0 + hn))

hn
.

Therefore there is a sequence of open intervals {In}n≥1 such that In ∩ (R \
U) = ∅ and |In| = Λ (R \ U, (x0, x0 + hn)). Then In ⊂ U for each n ≥ 1
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and

d(U, x0) ≥ d+
(U, x0) ≥ d

⋃
k≥1

Ik, x0

 ≥
≥ lim sup

n→∞

λ
(⋃

k≥1 Ik ∩ [x0, x0 + hn]
)

hn
=

= lim sup
n→∞

λ
(⋃

k≥n Ik

)
hn

≥ lim sup
n→∞

λ(In)

hn
=

= lim sup
n→∞

Λ (R \ U, (x0, x0 + hn))

hn
= p+(R \ U, x0) = p(R \ U, x0).

�

The next theorem follows immediately from Lemma 2.1

Theorem 2.2. Let f : I → R. Then
1. P%(f) ⊂P%(f) for % ∈ [0, 1),
2. S%(f) ⊂ S%(f) for % ∈ [0, 1),
3. M%(f) ⊂M%(f) for % ∈ (0, 1],
4. N%(f) ⊂ N%(f) for % ∈ (0, 1].

We will show, in the next example, that all inclusions in Theorem 2.2 are
proper.

Example 2.2. We will construct f ∈M1 such that 0 6∈ S0(f), e.g. M1(f)\
S0(f) 6= ∅.

Let {xn}n≥1 be a decreasing sequence of positive numbers such that
lim
n→∞

xn = 0, xn − xn+1 ≥ xn+1 − xn+2 and lim
n→∞

xn−xn+1

xn+1
= 0 (for example,

xn = 1
n). Let yn, zn ∈ (xn+1, xn) be such that xn − zn = 1

n+5(xn − xn+1),
yn − xn+1 = 1

n+5(xn − xn+1). Thus xn+1 < yn < zn < xn for each n ≥ 1.
Notice that zn − yn = n+3

n+5(xn − xn+1) for each n ≥ 1.. Let f : R → R be
defined by

f(x) =

 0 if x ∈
⋃∞
n=1[yn, zn] ∪ {0},

1 if x ∈ (0,∞) \
⋃∞
n=1[yn, zn],

f(−x) if x ∈ (∞, 0).

Obviously, at each x 6= 0 the function f is continuous from the right or from
the left, and therefore R \ {0} ⊂ M1(f). Let U =

⋃∞
n=1(yn, zn). Then for
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each n ≥ 1 we have

λ(U ∩ [0, xn])

xn
=

∞∑
k=n

λ([yk, zk])

xn
≥

∞∑
k=n

k+5
k+7(xk − xk+1)

yn
≥

≥ n+5
n+7

∞∑
k=n

(xk − xk+1)

yn
=
n+ 5

n+ 7

xn
xn

=
n+ 5

n+ 7
.

Therefore

d(U, 0) = d+(U, 0) ≥ lim inf
n→∞

λ(U ∩ [0, yn])

yn
= lim inf

n→∞

λ(U ∩ [0, xn])

yn
≥

≥ lim inf
n→∞

n+ 5

n+ 7
= 1.

Hence d(U, 0) = 1 and f is approximately continuous at 0. Moreover, U is
open, so 0 ∈M1(f).

For each ε ∈ (0, 1), R \ {x : |f(x) − f(0)| < ε} ⊂ R \
∞⋃
n=1
{xn}. Let

h ∈ [xn+1, xn]. Since
Λ

(
R\
∞⋃

n=1
{xn},(0,h)

)
h ≤ xn−xn+1

xn+1
and lim

n→∞
xn−xn+1

xn+1
= 0,

we deduce

p(R \ {x : |f(x)− f(0)| < ε}, 0) = lim
h→0+

Λ

(
R \

∞⋃
n=1
{xn}, (0, h)

)
h

= 0.

Thus 0 6∈ S0(f).

Lemma 2.2. Let % ∈ [0, 1] and x ∈ R. Let {En : n ∈ N} be a descending

family of open sets such that x ∈
∞⋂
n=1

En, d(En, x) ≥ % for n ≥ 1. Then

there exists an open set E such that d(E, x) ≥ % and for every positive
integer n there exists δn > 0 such that E ∩ (x− δn, x+ δn) ⊂ En.

Proof. By assumptions, d(En, x) ≥ % for n ≥ 1. Therefore d+
(En, x) ≥ % or

d
−

(En, x) ≥ % for each n. Hence there exists an infinite family {Enk
: k ∈ N}

such that d+
(Enk

, x) ≥ % for all k ≥ 1 or d−(Enk
, x) ≥ % for all k ≥ 1.

Without loss of generality we may assume that the first possibility occurs.
Then d

+
(En, x) ≥ % for all n ≥ 1, because {En : n ∈ N} is a descending

family.
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We shall construct inductively a decreasing sequence {xn}n≥1 converging
to x such that

(1)
λ(En ∩ [xn+1, xn])

xn − x
> %
(

1− 1

2n

)
for n ≥ 1.

Let x1 > x be any point for which λ(E1∩[x,x1])
x1−x > %

(
1− 1

2

)
and x1 − x <

1. Next, we can find x2 ∈ (x, x1) such that λ(E1∩[x2,x1])
x1−x > %

(
1− 1

2

)
,

λ(E2∩[x,x2])
x2−x > %

(
1− 1

4

)
and x2 − x < 1

2 . There exists x < x3 < x2 for

which λ(E2∩[x3,x2])
x2−x > %

(
1− 1

4

)
, λ(E3∩[x,x3])

x3−x > %
(
1− 1

8

)
and x3 − x < 1

3 .
Assume that points x1, x2, . . . , xn with properties x < xn < . . . < x1,

λ(Ei−1∩[xi,xi−1])
xi−1−x > %

(
1− 1

2i−1

)
for i ∈ {2, . . . , n}, λ(Ei∩[x,xi])

xi−x > %
(
1− 1

2i

)
and xi−x < 1

i for i ∈ {1, 2, . . . , n} are chosen. Then there exists x < xn+1 <

xn such that λ(En∩[xn+1,xn])
xn−x > %

(
1− 1

2n

)
, λ(En+1∩[x,xn+1])

xn+1−x > %
(
1− 1

2n+1

)
and xn+1 − x < 1

n+1 .
Thus we have constructed inductively the sequence {xn}n≥1 satisfying con-
dition (1).

Let E =
∞⋃
n=1

(
En ∩ (xn+1, xn)

)
. Obviously, E is open. Since

lim sup
n→∞

λ(E ∩ [x, xn])

xn − x
≥ lim sup

n→∞

λ(En ∩ [xn+1, xn])

xn − x
≥

≥ lim
n→∞

%

(
1− 1

2n

)
= %,

we obtain d(E, x) ≥ %.
By the definition of the set E, for each n there exists δn = xn−x > 0 such

that E ∩ (x− δn, x+ δn) = E ∩ [x, xn) ⊂ En. The proof is completed. �

Theorem 2.3. Let f : I → R and % ∈ (0, 1]. Then M%(f) = N%(f).

Proof. From Proposition 2.1 it is clear that it is sufficient to show N%(f) ⊂
M%(f). Let x0 ∈ N%(f). Then for each positive integer n there is an open
set En such that d(En, x0) ≥ % and f(En) ⊂

(
f(x0)− 1

n , f(x0) + 1
n

)
. By

Lemma 2.2 for sets En, we can construct an open set E such that d(E, x0) ≥
% and for each n there exists δn > 0 for which E ∩ (x0 − δn, x0 + δn) ⊂ En.
The last condition implies that f |E ∪ {x0} is continuous at x0. Thus x0 ∈
M%(f). �

Theorem 2.4. Let % ∈ [0, 1), f : I → R, x0 ∈ I. Then x0 ∈P%(f) if and
only if

lim
ε→0+

d (int{x : |f(x)− f(x0)| < ε}, x0) > %.
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Proof. Assume that f is P%-continuous at x0. Let U ⊂ I be an open
set such that d(U, x0) > % and f |U ∪ {x0} is continuous at x0. Let ε >
0. Since f |U ∪ {x0} is continuous at x0, we can find δ > 0 such that
(x0 − δ, x0 + δ) ∩ U ⊂ {x : |f(x0)− f(x)| < ε}. Hence

d
(
{x ∈ I : |f(x0)− f(x)| < ε}, x0

)
≥

≥ d
(
int{x ∈ U : |f(x0)− f(x)| < ε}, x0

)
= d(U, x0)

for each ε > 0. Therefore

lim
ε→0+

d
(
int{x ∈ I : |f(x0)− f(x)| < ε}, x0

)
≥ d(U, x0) > %.

Finally, assume that

%1 = lim
ε→0+

d
(
int{x ∈ I : |f(x0)− f(x)| < ε}, x0

)
> %.

Using Lemma 2.2 for sets En = {x ∈ I : |f(x0) − f(x)| < 1
n} we can

construct an open set U such that d(U, x0) ≥ %1 > % and for each n there
exists δn > 0 for which U ∩ (x0 − δn, x0 + δn) ⊂ En. The last condition
implies that f |U∪{x0} is continuous at x0. It follows that f is P%-continuous
at x0, what was to be shown. �

Theorem 2.5. Let 0 < %1 < %2 < 1 and f : I → R. Then

M1(f) = N1(f) ⊂P%2(f) ⊂ S%2(f) ⊂M%2(f) =

= N%2(f) ⊂P%1(f) ⊂P0(f) ⊂ S0(f).

Proof. The proof follows immediately from Proposition 2.1 and Theorem 2.3.
�

Theorem 2.6. Let 0 < %1 < %2 < 1. Then

M1 = N1 ⊂P%2 ⊂ S%2 ⊂M%2 = N%2 ⊂P%1 ⊂P0 ⊂ S0

and all incusions are proper.

Proof. All inclusions follow from the previous theorem. We will only show
(in Examples 2.3-2.5) that they are proper. �

Example 2.3. Let 0 ≤ %1 < %2 ≤ 1. We will construct f : R → R such
that f ∈P%1 \M%2 .

We can find a sequence {[an, bn]}n≥1 of pairwise disjoint closed intervals
such that 0 < bn+1 < an < bn for each n and d+

(
⋃∞
n=1[an, bn], 0) = %1+%2

2 .
Denote In = [an, bn] for every n ≥ 1. Define a function f : R→ R letting
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f(x) =


0 if x ∈ {0} ∪

∞⋃
n=1

In,

1 if x ∈ (−∞, 0) ∪
∞⋃
n=1

(bn+1, an) ∪ (b1,∞).

The function f is continuous from the left or from the right at every point

except 0. Hence R \ {0} ⊂ P%1(f). If E =
∞⋃
n=1

(an, bn) then E is open

and the function f restricted to E ∪ {0} is constant, so in particular, it is
continuous at zero. Moreover,

d(E, 0) = d
+

( ∞⋃
n=1

(an, bn), 0

)
= d

+

( ∞⋃
n=1

In, 0

)
=
%1 + %2

2
> %1.

Hence 0 ∈P%1(f) and f ∈P%1 .
But

d
+

({x : f(x) < 1}, 0) = d
+

( ∞⋃
n=1

In, 0

)
=
%1 + %2

2
< %2.

Moreover d− ({x : f(x) < 1}, 0) = 0. Hence d ({x : f(x) < 1}, 0) < %2 and f
is not M%2-continuous at 0. Therefore 0 6∈M%2(f) and f 6∈M%2 .

Example 2.4. Let % ∈ (0, 1). We will construct f : R → R such that
f ∈M% \S%.

We can find a sequence {[an, bn]}n≥1 of pairwise disjoint closed intervals
such that 0 < bn+1 < an < bn for each n and d

+
(
⋃∞
n=1[an, bn], 0) = %.

Define a function f : R→ R letting

f(x) =


0 if x ∈ {0} ∪

∞⋃
n=1

[an, bn],

1 if x ∈ (−∞, 0) ∪
∞⋃
n=1

(bn+1, an) ∪ [b1,∞).

Observe that the function f is continuous from the left or from the right

at every point except 0. Hence R \ {0} ⊂ M%(f).Denote E =
∞⋃
n=1

(an, bn).

Then the function f |E ∪ {0} is constant, so in particular, it is continuous
at zero. Moreover,

d(E, 0) ≥ d+
(E, 0) = d

+

( ∞⋃
n=1

[an, bn], 0

)
= %.

Hence 0 ∈M%(f) and f ∈M%.
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Let ε ∈ (0, 1). Since

d ({x : |f(x)− f(0)| < ε}, 0) = d
+

( ∞⋃
n=1

[an, bn], 0

)
= %

we conclude that 0 6∈ S%(f) and f 6∈ S%.

Example 2.5. Let % ∈ [0, 1). We will construct f : R → R such that
f ∈ S% \P%.

We can find a sequence {[an, bn]}n≥1 of pairwise disjoint closed intervals
such that 0 < bn+1 < an < bn for each n and d

+
(
⋃∞
n=1[an, bn], 0) = %.

Define a function f : R→ R by

f(x) =


0 if x ∈ {0} ∪ (b1,∞) ∪

∞⋃
n=1

[an, bn),

1 if x ∈ (−∞, 0) ∪
∞⋃
n=2
{bn},

an−x
an−bn+1

if x ∈ (bn+1, an), n ≥ 1.

The function f is continuous from the right at every point except 0. Hence
R \ {0} ⊂ S%(f). Let Uε = {x : |f(x)− f(0)| < ε} \ {0} for each ε > 0.
Then Uε =

⋃∞
n=1(an − ε(an − bn+1), bn). Hence Uε is open. Moreover,

d (Uε, 0) = d
+

( ∞⋃
n=1

(an − ε(an − bn+1), bn), 0

)
=

= lim sup
n→∞

∑∞
k=n(bk − ak + ε(ak − bk+1))

bn
=

= lim sup
n→∞

∑∞
k=n

(
(1− ε)(bk − ak) + ε(bk − bk+1)

)
bn

=

= lim sup
n→∞

(
(1− ε)

∑∞
k=n(bk − ak)

bn
+ ε

bn
bn

)
=

= (1− ε)%+ ε > %.

Therefore 0 ∈ S%(f) and f ∈ S%.
On the other hand,

lim
ε→0+

d (int{x : |f(x)− f(0)| > ε}, 0) =

= lim
ε→0+

d
+

( ∞⋃
n=1

(an − ε(an − bn+1), bn), 0

)
= lim

ε→0+

(
(1− ε)%+ ε

)
= %.

Hence 0 /∈P%(f) and f /∈P%, by Theorem 2.4.
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