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SOME PROPERTIES OF OPENLY p-CONTINUOUS
FUNCTIONS

KATARZYNA NOWAKOWSKA

ABSTRACT

In the paper we present definition and some properties of openly g-upper continuous
functions. Connections with g-upper continuous and porouscontinuous functions are
studied.

1. PRELIMINARIES

In the paper we apply standard symbols and notations. By R we denote
the set of all real numbers, by N we denote the set of all positive integers.
The symbol A(+) stands for the Lebesgue measure on R. By int A we denote
the interior of a set A. In the whole paper I = (a,b) is an open interval
(not necessarily bounded) and f is a real-valued function defined on I. By
f|A we denote the restriction of f to a set A C I. Symbol |J| stands for
length of a interval J.

Let E be a measurable subset of R and let x € R. According to [4], the
numbers

d"(E,z) = liminf MEN[o,z+1)
t—0+ t

and
8+(E, x) = limsup MEN [z, +1])
t—0+ t
are called the right lower density of £ at = and right upper density of E at
x, respectively. The left lower and left upper densities of E at x are defined
analogously. If

dH(B,x)=d (E,x) (d_(E, 2)=d (B, ac))

then we call these numbers the right density (left density) of E at x and
denote it by d*(F,z) (d~(E,z)). The numbers

d(B,z) = max{d (E,z),d (E,z)}
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and
d(E,z) =min{d"(E,z),d” (E,z)}
are called the upper and lower density of E at x, respectively.

If d(E,x) = d(E, x) then we call this number the density of E at z and
denote it by d(E,z). If d(E,z) = 1 then we say that z is a point of density
of E.

First, we recall the notion of g-upper continuity.

Definition 1.1. [6] Let £ be a measurable subset of R, z € Rand 0 < o < 1.
We say that z is a point of p-type upper density of E if either d(E,z) > o
ifo<lord(E,z)=1if p=1.

Definition 1.2. [6] The function f: I — R is called g-upper continuous
at « € I provided that there is a measurable set £ C I such that z is a
point of p-type upper density of E, x € E and f|F is continuous at x. If
f is p-upper continuous at each point of I then we say that f is p-upper
continuous.

By UC, we denote the class of all p-upper continuous functions defined
on I, whereas the symbol UC,(f) denotes the set of all points at which the
function f is g-upper continuous.

In an obvious way we define one-sided p-upper continuity. Obviously f
is p-upper continuous at x if and only if it is g-upper continuous at = on
the right or on the left.

Definition 1.3. [7] Let E be a measurable subset of R. Let z € R and
0 < o< 1. We say that = is a point of weakly o-type upper density of E if
d(E,z) > o.

Definition 1.4. [7] The function f: I — R is called weakly g-upper con-
tinuous at x € I provided that there is a measurable set ¥ C I such that z
is a point of weakly o-type upper density of E, x € E and f|g is continuous
at x. If f is weakly o-upper continuous at each point of I then we say that
f is weakly p-upper continuous.

By widC, we denote the class of all weakly p-upper continuous functions
defined on I, whereas the symbol wi/C,(f) denotes the set of all points at
which the function f is weakly o-upper continuous.

In an obvious way we define one-sided weakly g-upper continuity. Observe
that f is weakly g-upper continuous at x if and only if it is weakly g-upper
continuous at z on the right or on the left.

We recall the definition of approximate continuity.

Definition 1.5. [4] The function f: I — R is called approximately contin-
uous at x € I provided that there is a measurable set & C I such that x is
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a point of density of E, z € E and f|g is continuous at x. If f is approx-
imately continuous at each point of I then we say that f is approximately
continuous.

By A we denote the class of all approximately continuous functions.

In [1] J. Borsik and J. Holos introduced path continuity connected with
the notion of porosity. For a set A C R and an open interval I C R let
A(A,I) denote the length of the largest subinterval of I having an empty
intersection with A. Let € R. Then, according to [1], [5], the numbers

A(A
p+(Aa -T) - thup ( 7(33,1’—|—t))
t—0+ t

and
AA, (x—t,z
p (A, x) = limsup (4, ( )
t—0t+ t
are called the right-porosity of the set A at x and the left-porosity of the
set A at x, respectively. The porosity of the set A at x is defined as

p(A, :E) = max{p_ (A> x),p+(A, .1‘)}

The set A is called right-porous at a point z if p™ (A4, z) > 0, left-porous at
a point x if p~(A,z) > 0 and porous at a point z if p(A,z) > 0. The set
A is called porous if A is porous at each point x € A. The set A is called
strongly porous at a point z if pT(A,z) =1 or p~(A4,2) = 1.

Definition 1.6. [1] Let r € [0,1), A C R, z € A. The point z will be called
a point of m,-density of the set A if p(R\ A, x) > r.

Let r € (0,1], AC R, 2 € A. The point z € A will be called a point of
wr-density of the set A if p(R\ A, z) > r.

Definition 1.7. [1] Let r € [0,1), x € R. The function f: R — R will be
called

1. P,-continuous at x if there exists a set A C R such that z € A, z is a
point of m,-density of A and f|A is continuous at x,

2. S,-continuous at x if for each ¢ > 0 there exists a set A C R such that
x € A, x is a point of m,-density of A and f(A) C (f(z) — e, f(x) +&).

Let r € (0,1], z € R. The function f: R — R will be called

3. M-continuous at a point x if there exists a set A C R such that = € A,
x is a point of p,-density of A and f|A is continuous at z,

4. N,-continuous at z if for each ¢ > 0 there exists a set A C R such that
x € A, x is a point of u,-density of A and f(A) C (f(x) —¢, f(x) + ).

All these functions will be called porously continuous. Symbols P.(f),

Sr(f), My(f), N-(f) will denote the sets of all points at which the function
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f is ‘P,-continuous, S,-continuous, M,.-continuous,
N,-continuous.

2. OPEN p-UPPER CONTINUOUS FUNCTIONS

We define new classes of functions lying between the class of g-upper
continuous and the class of porously continuous functions.

Definition 2.1. Let ¢ € [0,1), x € I. The function f: I — R is called

1. Z,-continuous at z if there exists an open set U C R such that d(U, z) >
o and f|U U {z} is continuous at .

2. #,-continuous at x if for each € > 0 there exists an open set U C I such
that d(U,z) > ¢ and f(U) C (f(z) — e, f(z) + ¢).

Let ¢ € (0,1], x € I. The function f: I — R is called

1. .#,~continuous at z if there exists an open set U C I such that d(U, z) >
o and f|U U {z} is continuous at z.
2. A,-continuous at x if for each € > 0 there exists an open set U C R such

that d(U,z) > ¢ and f(U) C (f(z) — e, f(z) + €).

We denote the «class of all Z,-continuous, .#,-continuous,
M ,-continuous, A,-continuous by P, S, M,, Ny, respectively. Symbols
Po(f)s So(f), Ay(f), No(f) denotes the sets of all points at which the
function f is &,-continuous, .%,-continuous, .#,-continuous, .4,-continuous,
respectively.

Remark 2.1. In [3] similar functions are considered. But in the definitions
A (f) and B.(f) in [2] symmetric density is used. And there is connections
between A, (f), Br(f), o-upper continuity and porouscontinuity.

Some obvious relations between sets of open g-continuity of f will be
described in the following propositions.

Proposition 2.1. Let f: I — R. Then

'@ ()C'@m( )andy@z(f)cym(f)fOTOSQl<Q2<1;
'//1 ( )C«///m( )and‘/VQQ(f)C%l(f)foro<Ql<Q2§1:
99() My(f) and Fo(f) T Ap(f) for 0 <o <1,

‘//l (f)CQZQl(f) and%z(f)Cy@l(f)foroggl<92Sl;
@g(f)cyg(f)f0r0§g<1,

My(f) T Ny(f) for 0 < p < 1.

Proposition 2.2. Let f: I = R, p€[0,1). Then Z,(f) CUC(f).
Proposition 2.3. Let f: I - R, p € (0,1]. Then 4,(f) C wldCy(f).

S G Lo o~

The following two propositions follow directly from the definitions.
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Proposition 2.4. Let p € [0,1), x € I. If f: I — R is continuous at x
from the left or from the right then x € Z,(f) N P(f).

Proposition 2.5. Let p € (0,1], x € I. If f: I — R is continuous at x
from the left or from the right then x € N,(f) N My(f).

We will show that approximate continuity does not imply any open p-
upper continuity. To this end we need well known theorem of Zahorski.

Theorem 2.1. [4| Let E be a set of F, type such that d(E,x) = 1 for all
x € E. There exists an approzimately continuous function f: E — R such
that 0 < f(z) < 1 for all x € E and f(x) = 0 for all x ¢ E. Then the

function f is also upper semi-continuous.

Example 2.1. We will give an example of approximately continuous func-
tion which does not belong to .7.

Let E C R be nowhere dense closed set with positive Lebesgue measure.
Let L(E) be a set of density points of E. Then A(L(E)) = A E), by
Lebesgue Density Theorem [4]. Let F' C L(E) be a set of F, type such
that A(F') = AM(L(E)). Then F C L(F). By Theorem 2.1, there exists an
approximately continuous function f: R — R such that f(z) € (0, 1] for all
x € Fand f(x) =0forall x € R\ F. Let 2y € F, so f(zg) > 0. For all
0 <e < f(xg) we have

{z: [f(x) = f(zo)| <} C F.

The set F' is nowhere dense, so int{z: |f(z) — f(x0)| < e} = 0. Hence f is
not .#y-continuous at xg.

The class of all weakly g-upper continuous functions consists the class of
all Lebesgue measurable functions |7], so all considered classes of functions
P oS o My, N, consist the class of all Lebesgue measurable functions.

Lemma 2.1. Let U C R be open set, xg € R. Then

d(U,zo) > p(R\ U, x0).

Proof. Let p(R\ U,zp) = ¢. Then p™(R\ U,z9) = cor p~ (R\ U,z0) = c.
Without loss of generality we may assume that p* (R \ U, z9) = ¢. There-
fore there is decreasing sequence {hy},>1 of positive numbers such that
lim A, =0 and

n—o0

AR\ U hn
p+(R\U,330) — lim ( \ ,(l‘o,ﬂj‘o—I— ))

n—oo hy,

Therefore there is a sequence of open intervals {I,, },>1 such that I, N (R\
U) =0 and |I,| = AR\ U, (20,20 + hy)). Then I,, C U for each n > 1



78 K. NOWAKOWSKA
and

E(Ua xO) > a U :L'O 2 U Ik,ll?’(] >
k>1

A (Upst T 1 20, @0 + o))

> limsu =
MU ) )
= limsup ———— > limsup =
n—oo hTL n—o0o n
= lim sup AR\, (zo’ Zo+ hn)) =pT(R\ U, z0) = p(R\ U, z0)
n—o0 n

The next theorem follows immediately from Lemma 2.1

Theorem 2.2. Let f: I — R. Then

1. Po(f) C Po(f) for 0 €[0,1),
2. Sp(f) C Fo(f) for 0 €0,1),
3. My(f) C Ay(f) for o € (0,1],
4- No(f) € Ap(f) for 0 € (0,1].

We will show, in the next example, that all inclusions in Theorem 2.2 are
proper.

Example 2.2. We will construct f € .#; such that 0 € So(f), e.g. A1(f)\
So(f) # 0.
Let {x,}n>1 be a decreasing sequence of positive numbers such that

lim @, =0, Zp, — Tl > Tpil — Tna2 and lim 2" = (for example,
n—00 nosoo  Tntl

Ty = 5) Let yn, 2n € (41, 2n) be such that x, — z, = T+5( n— Tntl),
Yn — Tpil = n%%(a:n ZTnt1). Thus xp1 < yp < 2z, < x, for each n > 1.
Notice that z, — y, = Zig( — Zp41) for each n > 1.. Let f: R — R be
defined by

0 ifxeUpZ[yn, 24 U {0},
f(.I‘) - 1 ifze (07 OO) \ U?:l[yna Zn]7
f(=z) if z € (00,0).

Obviously, at each x # 0 the function f is continuous from the right or from
the left, and therefore R\ {0} C 4 (f). Let U = U2, (Yn, zn). Then for
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each n > 1 we have

5™ Mk, S k45,

AUN[0,2]) &, ([yk 2x]) N kgn D (g — Thy1) )

n Tn B Yn -

L—s—E)kZ::n(xk —$k+1) B n+5$l - "t s

= n+7 Un _n+7$n_n—|—7

Therefore
n A  Tp
d(U,0) = d*(U,0) > liminf 20O WD)y p AUOO20])
> liminfn+5 =1.

n—oo N+ 7

Hence d(U,0) = 1 and f is approximately continuous at 0. Moreover, U is
open, so 0 € 1 (f).

For each ¢ € (0,1), R\ {z: |f(zx) — f(0)] < e} C R\ Bl{xn} Let

A(R\ngl{zn},(o,h))

h € [Zny1, 2] Since - < InZInil gnd lim fmfneEl — )

- Tn+1 n—oo Tn41

we deduce

=0.

A (R\ U {xn},(O,h)>
p(R\ {z: |f(z) — f(0)] <¢€},0) = lim n=1

h—0+ h
Thus 0 & So(f).

Lemma 2.2. Let o € [0,1] and x € R. Let {E,: n € N} be a descending
00 _
family of open sets such that x € (| En, d(E,,x) > o forn > 1. Then

n=1
there exists an open set E such that d(E,xz) > o and for every positive
integer n there exists 6, > 0 such that EN (x — 0p, 2z + y,) C Ey.

Proof. By assumptions, d(E,,z) > o for n > 1. Therefore E+(En, x) > por

d (En,z) > g for each n. Hence there exists an infinite family {E,, : k € N}
such that E+(Enk,x) > pforall k> 1ord (Ep,z) > pforalk > 1.
Without loss of generality we may assume that the first possibility occurs.
Then E+(En,x) > p for all n > 1, because {E,,: n € N} is a descending
family.
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We shall construct inductively a decreasing sequence {x, },>1 converging
to = such that

MEn N [Xpt1, xn)) 1
(1) pa— >Q(1—2—n> for n > 1.
Let 1 > z be any point for which A(E%w >po(1-3)and 31 —z <

1. Next, we can find x9 € (x,21) such that MEiNlzzm]) g(l— %),

xr1—T
W > Q(l—i) and 290 —x < % There exists ¢ < w3 < x9 for
which AE20Es22]) o (1 _ 1) ABOmE) o (1 _ 1) and oy — < &
ro—T ) r3—T :
R Assume that points z1,xo,...,z, with properties z < z, < ... < x1,
Ei10lzi,zi— . ME;N[z,x;
% > Q(l— 21.1_1) for i € {2,...,n}, % > g(l—%)
and z;—z < % fori € {1,2,...,n} are chosen. Then there exists z < xp4+1 <
oy such that AECEmnll o g (1 ), MEatleteal oo (1 gl

and Tp41 — < %H
Thus we have constructed inductively the sequence {z, },>1 satisfying con-

dition (1).
o
Let E= | (En N (mn+1,xn)). Obviously, E is open. Since

n=1

lim sup AEN [z, 2n]) > lim sup A(En N [Tng1, 2n])

n—oo Ty — T n—oo Tpn — T

>

1
> 1 )=
> nll_rg;OQ(l 2n> o,
we obtain d(E,z) > o.

By the definition of the set E, for each n there exists §,, = x,, —x > 0 such
that £ N (x — 0p,x + 6,) = EN[z,2,) C E,. The proof is completed. O

Theorem 2.3. Let f: I — R and o € (0,1]. Then #,(f) = A,(f).

Proof. From Proposition 2.1 it is clear that it is sufficient to show A, (f) C
My(f). Let zg € A,(f). Then for each positive integer n there is an open
set E, such that d(E,,z) > o and f(E,) C (f(:no) — %,f(xo) + %) By
Lemma 2.2 for sets E,,, we can construct an open set E such that d(E,xq) >
o and for each n there exists d,, > 0 for which E'N (g — dn,x0 + 6n) C E,.
The last condition implies that f|E U {xo} is continuous at xg. Thus zg €

Mo (f)- -

Theorem 2.4. Let p € [0,1), f: I - R, g € I. Then xg € P,(f) if and
only if B
lim d(int{x: |f(z) — f(z0)| < €}, 20) > 0.

e—0t
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Proof. Assume that f is &?,-continuous at zo. Let U C I be an open
set such that d(U,z0) > o and f|U U {xg} is continuous at xg. Let & >
0. Since f|U U {xzo} is continuous at xp, we can find § > 0 such that
(xo — 0,20 +0)NU C{x: |f(xo) — f(x)] < e}. Hence

d({z € I:|f(zo) — f(z)| <e},z0) >
> d(int{z € U: |f(z0) — f(z)| < e}, 20) = d(U, )

for each € > 0. Therefore

lim d(int{z € I: |f(z0) — f(z)| < e}, x0) = d(U, z0) > o.

e—0t

Finally, assume that

01 = lir(r)1+a(int{x €I:|f(zo) — f(z)| <e},mo) > 0.

e—

Using Lemma 2.2 for sets E, = {z € I:[f(z0) — f(z)| < 1} we can
construct an open set U such that d(U,xg) > o1 > o and for each n there
exists 0, > 0 for which U N (zg — dp, 20 + 0,) C E,. The last condition
implies that f|irufa,) is continuous at zg. It follows that f is &,-continuous
at zg, what was to be shown. [l

Theorem 2.5. Let 0 < g1 < g2 <1 and f: I — R. Then

AN(f) = MN(f) C P (f) C Fou(f) C My (f) =
=N (f) € P (f) € Z20(f) € H0(f)-

Proof. The proof follows immediately from Proposition 2.1 and Theorem 2.3.
O

Theorem 2.6. Let 0 < o1 < g2 < 1. Then
My =M C Py C Loy CMpy =Ngy C Py C Py C S
and all incusions are proper.

Proof. All inclusions follow from the previous theorem. We will only show
(in Examples 2.3-2.5) that they are proper. O

Example 2.3. Let 0 < g1 < 92 < 1. We will construct f: R — R such
that f € P, \ A,,.

We can find a sequence {[an, by]}n>1 of pairwise disjoint closed intervals
such that 0 < b,41 < ay, < by, for each n and dr (U2 [an, by],0) = %.

n=1

Denote I, = [ay, by] for every n > 1. Define a function f: R — R letting
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0 ifee{0}u U I,
f($) = n=1 oo
1 ifx e (—o00,0)U | (bnt1,an) U (b, 00).
n=1

The function f is continuous from the left or from the right at every point
o
except 0. Hence R\ {0} € Z,,(f). If E = U (an,byn) then E is open

n=1
and the function f restricted to E U {0} is constant, so in particular, it is
continuous at zero. Moreover,

- () () 57

Hence 0 € Z,,(f) and f € Z,,.
But

T {a: f(z) <1),0)=d" <UIn,0> 91“’2 < 0.

Moreover d  ({z: f(z) < 1},0) = 0. Hence d ({x: f(x) < 1},0) < 02 and f
is not .#,,-continuous at 0. Therefore 0 € #,,(f) and f & M,.

Example 2.4. Let o € (0,1). We will construct f: R — R such that
fey\ .

We can find a sequence {[an, by]}n>1 of pairwise disjoint closed intervals
such that 0 < b,11 < a, < by, for each n and dr (UpZylan, by],0) = o.
Define a function f: R — R letting

0 ifze{0}u U [an,bn]
fz) = "=
1 ifzx e (—00,0)U | (bnt1,an) U[br,00).

n=1
Observe that the function f is continuous from the left or from the right

oo
at every point except 0. Hence R\ {0} C .#,(f).Denote E = |J (an,by).
n=1
Then the function f|E U {0} is constant, so in particular, it is continuous
at zero. Moreover,

d(E,0)>d"( (U ;s b )z@-

Hence 0 € #,(f) and f € #,.
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[ana bn]7 0) =0

Example 2.5. Let o € [0,1). We will construct f: R — R such that
feS\ Py

We can find a sequence {[an, by]}n>1 of pairwise disjoint closed intervals

Let € € (0,1). Since

d({z: | f(z) = f(0)] <},0)=d" (

1Ce

we conclude that 0 € .7,(f) and f & .7,.

o0

such that 0 < b,11 < a, < b, for each n and dr (UpZilan, bn],0) = o.
Define a function f: R — R by

0 ifae{0}U (broo)U U an bu),
n=1
flz)= 1 if x € (—00,0) U Ej {bn},
n=2

an“f;il if z € (bpt1,an),n > 1.

The function f is continuous from the right at every point except 0. Hence
R\ {0} € S(f). Let Us = {z: |f(z) — f(0)| < e} \ {0} for each £ > 0.
Then U, = J;2 (@, — €(an — bnt1),byn). Hence U, is open. Moreover,

dU.,0)=d" (G (an — (an — buy1), ba), o) =

n=1

= lim sup Zk:”(bk — kTt s(ak _ bk+1)) =

n—oo bn

i Do (1= &) (b — ag) + (b — bry1))

= lim sup =

n—0o0 bn

> (b — by,

= limsup (I—E)M—i—s— =

=(1—-¢c)o+e>o.
Therefore 0 € .Z,(f) and f € .7,
On the other hand,

lim @ (int{o: |£(z) ~ £(0)] > £},0) =

o :
— lim d o —e(an —bps1):by),0 | = lim ((1— — 0
i (o= nh0) = iy (-0 =

Hence 0 ¢ Z,(f) and f ¢ &,, by Theorem 2.4.
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