PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical study on stress paths in grounds reinforced with long and short CFG piles during adjacent rigid retaining wall movement

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Ensuring the safety of existing structures is an important issue when planning and executing adjacent new foundation pit excavations. Hence, understanding the stress state conditions experienced by the soil element behind a retaining wall at a given location during different excavation stages has been a key observational modelling aspect of the performance of excavations. By establishing and carrying out sophisticated soil–structure interaction analyses, stress paths render clarity on soil deformation mechanism. On the other hand, column-type soft ground treatment has recently got exceeding attention and practical implementation. So, the soil stress–strain response to excavation-induced disturbances needs to be known as well. To this end, this paper discusses the stress change and redistribution phenomena in a treated ground based on 3D numerical analyses. The simulation was verified against results from a 1 g indoor experimental test conducted on composite foundation reinforced with long and short cement–fly ash–gravel (CFG) pile adjacent to a moving rigid retaining wall. It was observed that the stress path for each monitoring point in the shallow depth undergoes a process of stress unloading at various dropping amounts of principal stress components in a complex manner. The closer the soil element is to the wall, the more it experiences a change in principal stress components as the wall movement progresses; also, the induced stress disturbance weakens significantly as the observation point becomes farther away from the wall. Accordingly, the overall vertical load-sharing percentage of the upper soil reduces proportionally.
Wydawca
Rocznik
Strony
38--52
Opis fizyczny
Bibliogr. 69 poz., rys., tab.
Twórcy
  • School of Civil Engineering, Zhengzhou University, Zhengzhou 450001, China
  • School of Civil Engineering, Hawassa University, Hawassa, Ethiopia
  • School of Civil Engineering, Zhengzhou University, Zhengzhou 450001, China
autor
  • School of Civil Engineering, Zhengzhou University, Zhengzhou 450001, China
Bibliografia
  • [1] Poulos, H. G. (2016). Tall building foundations: Design methods and applications. Innovative Infrastructure Solutions, 1(1), 10. https://doi.org/10.1007/s41062-016-0010-2
  • [2] Uge, B. U., & Guo, Y.-C. (2020). CFG Pile Composite Foundation: Its Engineering Applications and Research Advances. Journal of Engineering, 2020, 1–26. https://doi.org/10.1155/2020/5343472
  • [3] Halder, P., & Manna, B. (2021). Large scale model testing to investigate the influence of granular cushion layer on the performance of disconnected piled raft system. Acta Geotechnica. https://doi.org/10.1007/s11440-020-01121-5
  • [4] Rui, R., Han, J., Ye, Y., Chen, C., & Zhai, Y. (2020). Load Transfer Mechanisms of Granular Cushion between Column Foundation and Rigid Raft. International Journal of Geomechanics, 20(1), 04019139. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001539
  • [5] Jiang, W., & Liu, Y. (2018). Determination of neutral plane depth and pile-soil stress ratio of the rigid pile composite foundation. Rock and Soil Mechanics, 39(12), 4554–4560. https://doi.org/10.16285/j.rsm.2017.0812
  • [6] Tradigo, F., Pisanò, F., & di Prisco, C. (2016). On the use of embedded pile elements for the numerical analysis of disconnected piled rafts. Computers and Geotechnics, 72, 89–99. https://doi.org/10.1016/j.compgeo.2015.11.005
  • [7] Wu, C., Guo, W., & Li, Y. (2016). Calculation of neutral surface depth and pile-soil stress ratio of rigid pile composite foundation considering influence of negative friction. Chinese Journal of Geotechnical Engineering, 38(2), 278–287. https://doi.org/10.11779/CJGE201602011
  • [8] Yan, F., & Huang, X. (2014). Experiment Research of Bearing Behavior on Lime-Soil Pile and CFG Pile Rigid-Flexible Pile Composite Subgrade. Ground Improvement and Geosynthetics, 40–48. https://doi.org/10.1061/9780784413401.004
  • [9] Zhang, E., Yu, L., & He, X. (2016). Analysis of Action Mechanism for Rigid Flexible Pile Composite Foundation. Revista Tecnica De La Facultad De Ingenieria Universidad Del Zulia, 39(11), 260–270. https://doi.org/10.21311/001.39.11.32
  • [10] Guo, Y. C., Zhang, S. H., Shi, G., & Liu, N. (2011). Optimization Strategy of the Long-Short-Pile Composite Foundation Based on the Settlement Control. Advanced Materials Research, 243–249, 2429–2434. https://doi.org/10.4028/www.scientific.net/AMR.243-249.2429
  • [11] Lu, H., Gao, Q., Zhou, B., Wang, D., & Liang, M. (2015). Experimental Research on Bearing Capacity of Long-and-short Pile Composite Foundation. Chinese Journal of Underground Space and Engineering, 11, 56–63.
  • [12] Li, L., Zhang, H., Xu, B., & Wang, Y. (2012). Optimization of excavation supporting structure considering lateral reinforcement effect of CFG composite foundation on soils. Chinese Journal of Geotechnical Engineering, 34, 500–506.
  • [13] Wei, Y. (2018). Research on evolutionary mechanisms and calculation method of earth pressure against rigid retaining walls close to rigid composite foundation [PhD Dissertation]. Zhengzhou University.
  • [14] Li, M., Qian, Y., Guo, Y., Wei, Y., Zhao, S., & Cui, X. (2019). Design of lateral soil pressure model test scheme for adjacent composite foundation. Mechanics in Engineering, 41(2), 157–163. https://doi.org/10.6052/1000-0879-18-418
  • [15] Li, L., Huang, J., & Han, B. (2018). Centrifugal Investigation of Excavation Adjacent to Existing Composite Foundation. Journal of Performance of Constructed Facilities, 32(4), 04018044. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001188
  • [16] Ji, Q. X., & Ge, X. S. (2013). The Research on the Influence of the Forms of Foundation on the Behavior of Adjacent Excavation Based on Building Materials. Advanced Materials Research, 788, 606–610. https://doi.org/10.4028/www.scientific.net/AMR.788.606
  • [17] Li, L., Huang, J., & Ji, X. (2019). Lateral pressures on retaining wall of composite foundation in clayey soils. Chinese Journal of Geotechnical Engineering, 41(1), 89–92. https://doi.org/10.11779/CJGE2019S1023
  • [18] Wang, G., & Yang, Y. (2013). Effect of cantilever soldier pile foundation excavation closing to an existing composite foundation. Journal of Central South University, 20(5), 1384–1396. https://doi.org/10.1007/s11771-013-1626-4
  • [19] Fu, Q., & Li, L. (2021). Vertical Load Transfer Behavior of Composite Foundation and Its Responses to Adjacent Excavation: Centrifuge Model Test. Geotechnical Testing Journal, 44(1), 20180237. https://doi.org/10.1520/GTJ20180237
  • [20] Uba Uge, B., & Guo, Y. (2020). Deep Foundation Pit Excavations Adjacent to Disconnected Piled Rafts: A Review on Risk Control Practice. Open Journal of Civil Engineering, 10(03), 270–300. https://doi.org/10.4236/ojce.2020.103023
  • [21] Li, M., Qian, Y., Guo, Y., & Wei, Y. (2019). Study on Influence of retaining wall rotation on load distribution of rigid - pile composite foundation. Journal of Shenyang Jianzhu University (Natural Science), 35(4), 655–662.
  • [22] Korff, M., Mair, R. J., & Van Tol, F. A. F. (2016). Pile-Soil Interaction and Settlement Effects Induced by Deep Excavations. Journal of Geotechnical and Geoenvironmental Engineering, 142(8), 04016034. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001434
  • [23] Li, M., & Zhao, J. (2018). Progress of Research Advance on the Model Tests on the Interaction Between New Constructions and Adjacent Existing Buildings. In D. Zhang & X. Huang (Eds.), Proceedings of GeoShanghai 2018 International Conference: Tunnelling and Underground Construction (pp. 536–547). Springer Singapore. https://doi.org/10.1007/978-981-13-0017-2_54
  • [24] Mu, L., Chen, W., Huang, M., & Lu, Q. (2020). Hybrid Method for Predicting the Response of a Pile-Raft Foundation to Adjacent Braced Excavation. International Journal of Geomechanics, 20(4), 04020026. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001627
  • [25] Uge, B. U., & Cheng, G. Y. (2019). Research Progress on the influence of deep foundation pit excavation on adjacent pile foundation. Ninth International Conference on Advances in Civil, Structural and Mechanical Engineering CSM - 2019, 12–19. https://doi.org/10.15224/978-1-63248-182-5-03
  • [26] Liyanapathirana, D. S., & Nishanthan, R. (2016). Influence of deep excavation induced ground movements on adjacent piles. Tunnelling and Underground Space Technology, 52, 168–181. https://doi.org/10.1016/j.tust.2015.11.019
  • [27] Liang, Y.-Y., Liu, N.-W., Yu, F., Gong, X.-N., & Chen, Y.-T. (2019). Prediction of Response of Existing Building Piles to Adjacent Deep Excavation in Soft Clay. Advances in Civil Engineering, 2019, 1–11. https://doi.org/10.1155/2019/8914708
  • [28] Zhang, R., Zhang, W., & Goh, A. T. C. (2018). Numerical investigation of pile responses caused by adjacent braced excavation in soft clays. International Journal of Geotechnical Engineering, 1–15. https://doi.org/10.1080/19386362.2018.1515810
  • [29] Shi, J., Wei, J., Ng, C. W. W., & Lu, H. (2019). Stress transfer mechanisms and settlement of a floating pile due to adjacent multi-propped deep excavation in dry sand. Computers and Geotechnics, 116, 103216. https://doi.org/10.1016/j.compgeo.2019.103216
  • [30] Shakeel, M., & Ng, C. W. W. (2018). Settlement and load transfer mechanism of a pile group adjacent to a deep excavation in soft clay. Computers and Geotechnics, 96, 55–72. https://doi.org/10.1016/j.compgeo.2017.10.010
  • [31] Soomro, M. A., Mangnejo, D. A., Bhanbhro, R., Memon, N. A., & Memon, M. A. (2019). 3D finite element analysis of pile responses to adjacent excavation in soft clay: Effects of different excavation depths systems relative to a floating pile. Tunnelling and Underground Space Technology, 86, 138–155. https://doi.org/10.1016/j.tust.2019.01.012
  • [32] Ng, C. W. W., Shakeel, M., Wei, J., & Lin, S. (2021). Performance of Existing Piled Raft and Pile Group due to Adjacent Multipropped Excavation: 3D Centrifuge and Numerical Modeling. Journal of Geotechnical and Geoenvironmental Engineering, 147(4), 04021012. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002501
  • [33] Li, Z., Wang, L., Lu, Y., Li, W., & Wang, K. (2021). Effect of principal stress rotation on the stability of a roadway constructed in half-coal-rock stratum and its control technology. Arabian Journal of Geosciences, 14(4), 292. https://doi.org/10.1007/s12517-021-06623-4
  • [34] Choi, J., Koo, B., & Kim, T. (2015). Stiffness Degradation during Deep Excavation in Urban Area. Journal of the Korean Geo-Environmental Society, 16(2), 27–31. https://doi.org/10.14481/JKGES.2015.16.2.27
  • [35] Cao, Y., Liu, Y., & Du, C. (2021). Analysis of Stress Path in the Whole Process of Foundation Pit Excavation and Heavy Lifting. IOP Conference Series: Earth and Environmental Science, 634(1), 012130. https://doi.org/10.1088/1755-1315/634/1/012130
  • [36] Ying, H., Li, J., Xie, X., Zhu, K., & Zhou, J. (2012). Research on stress path during excavation considering rotation of principal stress axis. Rock and Soil Mechanics, 33(4), 1013–1017.
  • [37] Ng, C. W. W. (1999). Stress Paths in Relation to Deep Excavations. Journal of Geotechnical and Geoenvironmental Engineering, 125(5), 357–363. https://doi.org/10.1061/(ASCE)1090-0241(1999)125:5(357)
  • [38] Hsieh, P.-G., & Ou, C.-Y. (2012). Analysis of deep excavations in clay under the undrained and plane strain condition with small strain characteristics. Journal of the Chinese Institute of Engineers, 35(5), 601–616. https://doi.org/10.1080/02533839.2012.679115
  • [39] Ni, P., Mei, G., Zhao, Y., & Chen, H. (2018). Plane strain evaluation of stress paths for supported excavations under lateral loading and unloading. Soils and Foundations, 58(1), 146–159. https://doi.org/10.1016/j.sandf.2017.12.003
  • [40] Lim, A., & Ou, C.-Y. (2017). Stress paths in deep excavations under undrained conditions and its influence on deformation analysis. Tunnelling and Underground Space Technology, 63, 118–132. https://doi.org/10.1016/j.tust.2016.12.013
  • [41] Liu, L., Zhang, H., & Liu, J. (2018). Study on the Envelope of Stress Path During Deep Excavation. In W. Wu & H.-S. Yu (Eds.), Proceedings of China-Europe Conference on Geotechnical Engineering (pp. 377–380). Springer International Publishing. https://doi.org/10.1007/978-3-319-97112-4_84
  • [42] Huang, M., Liu, X., Zhang, N., & Shen, Q. (2017). Calculation of foundation pit deformation caused by deep excavation considering influence of loading and unloading. Journal of Central South University, 24(9), 2164–2171. https://doi.org/10.1007/s11771-017-3625-3
  • [43] Saeedi Azizkandi, A., Rasouli, H., & Baziar, M. H. (2019). Load Sharing and Carrying Mechanism of Piles in Non-connected Pile Rafts Using a Numerical Approach. International Journal of Civil Engineering, 17(6), 793–808. https://doi.org/10.1007/s40999-018-0356-2
  • [44] Guo, Y., Lv, C., Hou, S., & Liu, Y. (2021). Experimental Study on the Pile-Soil Synergistic Mechanism of Composite Foundation with Rigid Long and Short Piles. Mathematical Problems in Engineering, 2021, 1–15. https://doi.org/10.1155/2021/6657116
  • [45] Samanta, M., & Bhowmik, R. (2019). 3D numerical analysis of piled raft foundation in stone column improved soft soil. International Journal of Geotechnical Engineering, 13(5), 474–483. https://doi.org/10.1080/19386362.2017.1368139
  • [46] Juang, C. H., Gong, W., Martin, J. R., & Chen, Q. (2018). Model selection in geological and geotechnical engineering in the face of uncertainty—Does a complex model always outperform a simple model? Engineering Geology, 242, 184–196. https://doi.org/10.1016/j.enggeo.2018.05.022
  • [47] Boroujeni, F. F., & Porhoseini, R. (2020). Effect of execution process on pile group-excavation interaction. International Journal of Geotechnical Engineering. https://doi.org/10.1080/19386362.2020.1778155
  • [48] Miao, L. F., Goh, A. T. C., Wong, K. S., & Teh, C. I. (2006). Three-dimensional finite element analyses of passive pile behaviour. International Journal for Numerical and Analytical Methods in Geomechanics, 30(7), 599–613. https://doi.org/10.1002/nag.493
  • [49] Yang, M., Dai, X., Zhang, M., & Luo, H. (2016). Experimental study on earth pressure of cohesionless soil with limited width behind retaining wall. Chinese Journal of Geotechnical Engineering, 38(1), 131–137. https://doi.org/10.11779/CJGE201601014
  • [50] Horikoshi, K., & Randolph, M. F. (1997). On the definition of raft—Soil stiffness ratio for rectangular rafts. Géotechnique, 47(5), 1055–1061. https://doi.org/10.1680/geot.1997.47.5.1055
  • [51] Fioravante, V. (2002). On the Shaft Friction Modelling of Non-Displacement Piles in Sand. SOILS AND FOUNDATIONS, 42(2), 23–33. https://doi.org/10.3208/sandf.42.2_23
  • [52] National standard of the people’s republic of China (JGJ 79—2012). (2012). Technical code for ground treatment of buildings. China Architecture & Building Press.
  • [53] Ou, C.-Y., Teng, F., & Li, C.-W. (2020). A simplified estimation of excavation-induced ground movements for adjacent building damage potential assessment. Tunnelling and Underground Space Technology, 106, 103561. https://doi.org/10.1016/j.tust.2020.103561
  • [54] Yang, Y., & Yu, H.-S. (2013). A kinematic hardening soil model considering the principal stress rotation: MODEL THE PRINCIPAL STRESS ROTATION. International Journal for Numerical and Analytical Methods in Geomechanics, 37(13), 2106–2134. https://doi.org/10.1002/nag.2138
  • [55] Li, L., Huang, J., Fu, Q., Cheng, X., & Hu, F. (2017). Centrifuge experimental study of mechanical properties of composite foundation with different replacement rates under additional load. Rock and Soil Mechanics, 38, 131–139. https://doi.org/10.16285/j.rsm.2017.S1.015
  • [56] Boussetta, S., Bouassida, M., & Zouabi, M. (2016). Assessment of observed behavior of soil reinforced by rigid inclusions. Innovative Infrastructure Solutions, 1(1), 27. https://doi.org/10.1007/s41062-016-0027-6
  • [57] Ge, X., Zhai, X., Xue, J., & Bai, X. (2011). Model test study of impact of pile length on long-short piles composite foundation. 2011 International Conference on Electric Technology and Civil Engineering (ICETCE), 2370–2374. https://doi.org/10.1109/ICETCE.2011.5775233
  • [58] Zhang, Q.-Q., Liu, S.-W., Feng, R.-F., Qian, J.-G., & Cui, C.-Y. (2020). Finite element prediction on the response of non-uniformly arranged pile groups considering progressive failure of pile-soil system. Frontiers of Structural and Civil Engineering, 14(4), 961–982. https://doi.org/10.1007/s11709-020-0632-5
  • [59] Hussien, M. N., Ramadan, E. H., Hussein, M. H., Senoon, A. A. A., & Karray, M. (2017). Load sharing ratio of pile-raft system in loose sand: An experimental investigation. International Journal of Geotechnical Engineering, 11(5), 524–529. https://doi.org/10.1080/19386362.2016.1236224
  • [60] Pham, Q. N., Ohtsuka, S., Isobe, K., & Fukumoto, Y. (2019). Group effect on ultimate lateral resistance of piles against uniform ground movement. Soils and Foundations, 59(1), 27–40. https://doi.org/10.1016/j.sandf.2018.08.013
  • [61] Das, B. M. (2014). Advanced soil mechanics (Fourth). CRC Press.
  • [62] Guo, C., Xiao, S. W., & Chen, Z. L. (2012). Study of Low Strength Pile Composite Foundation Deformation & Stability Calculation Method. Applied Mechanics and Materials, 170–173, 545–556. https://doi.org/10.4028/www.scientific.net/AMM.170-173.545
  • [63] Zhao, M., Zhang, L., & Yang, M. (2006). Settlement calculation for long-short composite piled raft foundation. Journal of Central South University of Technology, 13, 749–754. https://doi.org/10.1007/s11771−006−0026−4
  • [64] Niu, X., Yao, Y., Sun, Y., He, Y., & Zhang, H. (2018). 3D Numerical Analysis of Synergetic Interaction between High-Rise Building Basement and CFG Piles Foundation. Applied Sciences, 8(11), 2040. https://doi.org/10.3390/app8112040
  • [65] Do, N. V., Nghia, D. T., & Tu, P. Q. (2020). Stiffness of Soil in Excavation-Induced Deformation Analysis in Vietnam. In P. Duc Long & N. T. Dung (Eds.), Geotechnics for Sustainable Infrastructure Development (Vol. 62, pp. 351–354). Springer Singapore. https://doi.org/10.1007/978-981-15-2184-3_44
  • [66] Cudny, M., & Popielski, P. (2010). Analysis of excavation-induced deformation with different soil sodels. Task Quarterly, 14(4), 339–362.
  • [67] Boussetta, S., Bouassida, M., Dinh, A., Canou, J., & Dupla, J. (2012). Physical modeling of load transfer in reinforced soil by rigid inclusions. International Journal of Geotechnical Engineering, 6(3), 331–342. https://doi.org/10.3328/IJGE.2012.06.03.331-341
  • [68] Bui, P., Luo, Q., Zhang, L., & Zhang, M. (2009). Geotechnical Centrifuge Experiment Model on Analysis of Pile-Soil Load Share Ratio on Composite Foundation of High Strength Concrete Pile. International Conference on Transportation Engineering 2009, 3465–3470. https://doi.org/10.1061/41039(345)571
  • [69] Tran, V. D., Richard, J.-J., & Hoang, T. (2019). Soft Soil Improvement Using Rigid Inclusions: Toward an Application for Transport Infrastructure Construction in Vietnam. In H. Khabbaz, H. Youn, & M. Bouassida (Eds.), New Prospects in Geotechnical Engineering Aspects of Civil Infrastructures (pp. 89–99). Springer International Publishing. https://doi.org/10.1007/978-3-319-95771-5_8
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f6119560-495c-4afb-9ae4-96ca6698c1f2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.