PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Research on the properties of Co-TiC and Ni-TiC HiP-sintered alloys

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Three types of sintered alloys were fabricated based on cobalt, nickel and high-temperature alloy ZhS32-VI matrix with titanium carbide strengthening phase. TiC content was in a range of 30–50 vol. %. The melting temperatures of alloys are higher than 1320°C, and they may undergo undamaged through all technological procedures together with turbine blades, including soldering and outgassing. DSC analyses indicates no additional thermal effects until melting, which confirms their structural stability. The examinations of microstructure revealed three types of constituents – TiC particles, matrix solid solution and blow outs – structural defects having negative effects on all the studied properties. It was found that heat resistance of nickel based sintered alloys at the temperature of 1100°C is superior as compared with the alloys based on cobalt and alloy ZhS32-VI. It has been established that wear resistance in conditions of fretting wear at temperatures of 20, 850, 950 and 1050°C of sintered alloy with ZhS32-VI matrix is mostly superior as compared with the other alloys. The properties of produced alloys allow to use them for manufacturing of components of friction couples operating in conditions of high temperature fretting wear, including protective pads of turbine blades top shrouds contact faces.
Rocznik
Strony
57--67
Opis fizyczny
Bibliogr. 31 poz., rys., tab., wykr.
Twórcy
  • G.V. Kurdyumov Institute for Metal Physics, of N.A.S. of Ukraine, 36 Academician Vernadsky Boulevard, UA-03142 Kyiv, Ukraine
  • G.V. Kurdyumov Institute for Metal Physics, of N.A.S. of Ukraine, 36 Academician Vernadsky Boulevard, UA-03142 Kyiv, Ukraine
  • Engineering Department, Aerospace Institute, National Aviation University, 1 Kosmonavta Komarova Ave., UA-03058, Kyiv, Ukraine
  • Engineering Department, Aerospace Institute, National Aviation University, 1 Kosmonavta Komarova Ave., UA-03058, Kyiv, Ukraine
  • Engineering Department, Aerospace Institute, National Aviation University, 1 Kosmonavta Komarova Ave., UA-03058, Kyiv, Ukraine
Bibliografia
  • 1. Babak A., Barsoum M.W. (2016). Energy damping in magnesium alloy composites reinforced with TiC or Ti2AlC particles, Materials Science & Engineering, A 653, 53–62.
  • 2. Babak A., Casi E.N., Barsoum M.W. (2014), Fabrication and mechanical properties of pressureless melt infiltrated magnesium alloy composites reinforced with TiC and Ti2AlC particles, Materials Science and Engineering, 618, 511–522.
  • 3. Baskaran S., Anandakrishnan V, Muthukannan Duraisel Vam, Keerthivasan N. (2015) Study on dry sliding friction behaviour of tic reinforced AA7075 in-situ composites by Taguchi analysis, International Journal of Mechanical And Production Engineering, 3(3), 9–12.
  • 4. Bin C., Ye-fa T., Long H., Hua T., Li G. (2013), Tribological properties of TiC particles reinforced Ni-based alloy composite coatings, Transactions of Nonferrous Metals Society of China, 23(6), 1681–1688.
  • 5. Cherepova T.S., Dmitrieva G.P. (2016a) The Wear Features of Powder Cobalt Alloys Strengthened with Titanium Carbide, Powder Metallurgy and Metal Ceramics, 55(5-6), 374–378.
  • 6. Cherepova T.S., Dmitrieva G.P., Nosenko A.V., Semirga A.M. (2014) Wear-resistant alloy for protection of contact surfaces of working aircraft engine blades from oxidation at high temperatures, Science and Innovation, 10(4), 20–28.
  • 7. Cherepova T.S., Dmytrieva H.P. (2016b) Properties of titanium carbide-strenghtened cobalt-based sintered alloys, Metal Physics and Advanced Technologies, 38(11), 1497–1512 (in Ukrainian).
  • 8. Cherepova T.S., Dmytrieva H.P., Hosenko V.K. (2015) Heat resistance of cast and sintered alloys based on nickel and cobalt strengthened with carbides, Metallurgy and Heat Treatment of Metals, 3, 36–40 (in Ukrainian).
  • 9. Cherepova, T.S., Dmitrieva, G.P., Nosenko, V.K. (2016a). Heat resistance of the powder cobalt alloys reinforced with niobium or titanium carbide, Science and Innovation, 12(1), 5–10.
  • 10. Cherepova, T.S., Dmytrieva, H.P., Dukhota, O.I., Kindrachuk, M.V. (2016b) Properties of nickel powder alloys hardened with titanium carbide, Materials Science, 52(2), 173–179.
  • 11. Chinmaya K.S., Manoj M. (2015). Effect of pulse laser parameters on TiC reinforced AISI 304 stainless steel composite coating by laser surface engineering process, Optics and Lasers in Engineering, 67, 36–48.
  • 12. Chukwuma C., Onuoha X., Chenxin J., Zoheir N.F., Georges J.K., Kevin P.P. (2016). The effects of TiC grain size and steel binder content on the reciprocating wear behaviour of TiC-316L stainless steel cermets wear, Wear, 350-351, 116–129.
  • 13. Dmitrieva G.P., Cherepova T.S., Kosorukova T.A., Nichiporenko V.I. (2015) Structure and properties of wear resistant cobalt-based alloy with niobium carbide, Metal Physics and Advanced Technologies, 37(7), 973–986 (in Russian).
  • 14. Dmytrieva H.P., Cherepova T.S., Dukhota O.I., Nychyporenko V.I. (2017), Investigation of properties of sintered alloys based on ZhS32- VI with titanium carbide, Powder Metallurgy, 11/12, 68–75 (in Ukrainian).
  • 15. Dukhota O.I., Tisov O.V. (2010), The study on wear resistance of heat resistant composite alloys in conditions of high temperature fretting-wear, Problems of friction and wear, 53, 195–200 (in Ukrainian).
  • 16. Dukhota O.I., Tisov O.V., Cherepova T.S., Dmytrieva H.P., Kharchenko V.V. (2017), Tribotechnical examinations of high temperature wear resistant particle-reinforced alloys, Problems of friction and wear, 3(76), 60–66 (in Ukrainian).
  • 17. Jung S.-A., Kwon H., Suh C.-Y., Oh J.-M., Kim W. (2015). Preparation of a fine-structured TiC–Co composite by high-energy milling and subsequent heat treatment of a Ti–Co alloy, Ceramics International, 41(10), 14326–14331.
  • 18. Karantzalis A.E., Lekatou A., Evaggelidou M. (2013), Microstructure and sliding wear assessment of Co–TiC composite materials, International Journal of Cast Metals Research, 27(2), 73–79.
  • 19. Levashov E.A., Mishina E.S., Malochkin O.V., Stanskii D.V., Mour J.J., Fadeev M. I. (2003). Effect of nanocrystalline powders on the structure and properties of dispersion-hardened alloy TiC – 40% KhN70Yu, Metallurgist, 47(3/4), 133–139.
  • 20. Lieontiev V.A., Zilichihis S.D., Kondratiuk Ye.V., Zamkovoi V.Ye. (2006). Recovery of workability of GTE using new technologies and materials, Herald of Engine Constructing, 4, 99–103 (in Russian).
  • 21. Ouyang T., Wu J., Yasir M., Zhou T., Fang X., Wang Y., Liu D., Suo J. (2016), Effect of TiC self-healing coatings on the cyclic oxidation resistance and lifetime of thermal barrier coatings, Journal of Alloys and Compounds, 656, 992–1003
  • 22. Sakamoto T., Kurishita H., Matsuo S., Arakawa H, Takahashi S, Tsuchida M., Kobayashi S., Nakai K,. Terasawa M., Yamasaki T., Kawai M. (2015) Development of nanostructured SUS316L-2%TiC with superior tensile properties, Journal of Nuclear Materials, 466, 468–476.
  • 23. Shuster L.S., Mamleyev R.F., Kamaletdinova R.R., Chertovskikh S.V., Kireev R.M. (2016). Wear of friction pairs made of titanium carbide-based metal–ceramic material, Journal of Friction and Wear, 37(2), 165–169.
  • 24. Sun-A.J., Hanjung K., Chang-Yul S., Jung-Min O., Wonbaek K. (2015), Preparation of a fine-structured TiC–Co composite by highenergy milling and subsequent heat treatment of a Ti–Co alloy, Ceramics International, 41, 14326–14331.
  • 25. Takahashi S., Ikeno S., Imai E. (1981). Differential thermal analysis and structure of the Ni-TiC system, Journal of Materials Science, 16(12), 3418–3426.
  • 26. Tretiachenko G.N., Kravchuk G.N., Kuriat R.I., Voloshchenko A.P. (1975) Bearing capacity of gas turbines blades at nonstationary haet and force effect, Кyiv.: Naukova Dumka (in Russian).
  • 27. Volkova N. M., Dudorova T. A., Gurevich Y. G. (1989). Influence of hold time on carbide grain growth in TiC-Ni alloys, Soviet Powder Metallurgy and Metal Ceramics, 28(8), 613–617.
  • 28. Wei Z.(2012). Research on Microstructure and Property of TiC-Co Composite Material Made by Laser Cladding, Physics Procedia, 25, 205–208.
  • 29. Yuxin Li, Peikang Bai, Yaomin Wang, Jiandong Hu, Zuoxing Guo (2009). Effect of TiC content on Ni/TiC composites by direct laser fabrication, Materials & Design, Vol. 30, Iss. 4. 1409–1412.
  • 30. Zhang X.-H., Han J.-C., Du S.-Y., Wood J.V. (2000). Microstructure and mechanical properties of TiC-Ni functionally graded materials by simultaneous combustion synthesis and compaction, Journal of Materials Science, 35(8), 1925–1930.
  • 31. Zohari S., Sadeghian Z., Lotfi B., Broeckmann C. (2015). Application of spark plasma sintering (SPS) for the fabrication of in situ Ni– TiC nanocomposite clad layer, Journal of Alloys and Compounds, 633, 479–483.
Uwagi
Acknowledgements: the present work is supported by funding from the Ministry of Education and Science of Ukraine, (Project # 0117U004330 ‘Scientific fundamentals of designing novel technologies of surface engineering for elements of aircraft tribomechanical systems made of titanium alloys’) and by the National Academy of Science of Ukraine (Project # 0115U003007 ‘Phase equilibria in multicomponent eutectic alloys based on Al, Co, Ni and Ti, promising for use in power and civil engineering’).
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f60c9952-eb34-4fa7-bf4a-7379461e64ba
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.