PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dynamics of absorption properties of CDOM and its composition in Likas estuary, North Borneo, Malaysia

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Chromophoric Dissolved Organic Matter (CDOM) is a vital water constituent in aquatic ecosystems that contributes to water colour, affects light penetration, and impacts primary production. This study aims to determine the spatial and monsoonal variability of CDOM absorption properties in the Likas estuary, characterise the source of CDOM, and investigate the correlations between CDOM absorption properties and salinity. Likas estuary is a small estuary located in Kota Kinabalu city on the west coast of Sabah, facing the South China Sea. A mangrove ecosystem surrounds it with manufactured structures such as residential areas and public facilities. Surface water samples were collected at 19 stations: upstream of rivers to the river mouth and coastal area during spring tides every month, from June 2018 to July 2019, for 14-months. The distribution of aCDOM(440) in the study area is predictable as a signature in a coastal area with a decreasing gradient from the upstream towards coastal water (0.29 ± 0.19 m−1 to 1.05 ± 0.39 m−1). There are increasing spatial patterns of spectral slopes S275-295 and SR. However, S350-400 and S300-600 declined spatial gradients from the upstream to coastal water. Thus, S300-600 indicates a linear relationship between aCDOM(440), which unconventional results in coastal water. We suspect this is due to a small coverage of the study site with a distance of 0.5 m intervals of each station. This could be why the S300-600 had constant values throughout the study area (with no statistical difference between stations). In addition, S300-600 was merely varied in the stations located at the river mouth and coastal water. Based on the spectral slope ratio (SR), most of the stations located in the Darau, Inanam, and Bangka-Bangka rivers had SR values less than 1. Hence, CDOM in these stations is a terrestrial-dominated source. Therefore, from our observations during the study period, monsoonal variation could alter the source of CDOM in the study area.
Czasopismo
Rocznik
Strony
583--594
Opis fizyczny
Bibliogr. 59 poz., map., wykr.
Twórcy
  • Borneo Marine Research Institute, University of Malaysia of Sabah, Sabah, Malaysia
  • Borneo Marine Research Institute, University of Malaysia of Sabah, Sabah, Malaysia
  • Centre for Geography and Environmental Science, College of Life and Environmental Sciences, University of Exeter, Penryn, Cornwall, United Kingdom
  • Faculty of Science and Marine Environment, University of Malaysia Terengganu, Terengganu, Malaysia
  • Marine Research Laboratory (MEAL), Faculty of Fishery and Marine Science, Padjadjaran University, Jatinangor, Indonesia
Bibliografia
  • 1. Andrew, A., Del Vecchio, R., Subramaniam, A., Blough, N., 2013. Chromophoric dissolved organic matter (CDOM) in the Equatorial Atlantic Ocean: Optical properties related to CDOM structure and source. Mar. Chem. 148, 33-43. https://doi.org/10.1016/j.marchem.2012.11.001
  • 2. Astoreca, R., Rousseau, V., Lancelot, C., 2009. Coloured dissolved organic matter (CDOM) in Southern North Sea waters: Optical characterisation and possible origin. Estuar. Coast. Shelf Sci. 85(4), 633-640. https://doi.org/10.1016/j.ecss.2009.10.010
  • 3. Blough, N., Zafiriou, O., Bonilla, J., 1993. Optical absorption spectra of waters from the Orinoco River outflow: terrestrial input of colored organic matter to the Caribbean. J. Geophys. Res. 98 (C2), 2271-2278. https://doi.org/10.1029/92JC02763
  • 4. Blough, N.V., Green, S.A., 1995. Spectroscopic characterisation and remote sensing of non-living organic matter. In: Zepp, R.G., Sonntag, C. (Eds.), The Role of Non-living Organic Matter in the Earth’s Carbon Cycle. John Wiley & Sons, 23-45.
  • 5. Blough, N.V., Del Vecchio, R., 2002. Chromophoric DOM in the Coastal Environment. In: Hansell, D.A., Carlson, C.A. (Eds.), Biogeochemistry of Marine Dissolved Organic Matter. Academic Press, California, 509-546.
  • 6. Bowers, D.G., Brett, H.L., 2008. The relationship between CDOM and salinity in estuaries: an analytical and graphical solution. J. Mar. Syst. 73 (1—2), 1-7. https://doi.org/10.1016/j.jmarsys.2007.07.001
  • 7. Bowen, J.C., Clark, C.D., Keller, J.K., De Bruyn, W.J., 2017. Optical properties of chromophoric dissolved organic matter (CDOM) in surface and pore waters adjacent to an oil well in a southern California salt marsh. Mar. Pollut. Bull. 114 (1), 157-168. https://doi.org/10.1016/j.marpolbul.2016.08.071
  • 8. Brandão, L.P.M., Brighenti, L.S., Staehr, P.A., Asmala, E., Massicotte, P., Tonetta, D., Barbosa, F.A.R., Pujoni, D., Bezerra-Neto, J.F., 2018. Distinctive effects of allochthonous and autochthonous organic matter on CDOM spectra in a tropical lake. Biogeosciences 15 (9), 2931-2943. https://doi.org/10.5194/bg-15-2931-2018
  • 9. Bricaud, A., Morel, A., Prieur, L., 1981. Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains. Limnol. Oceanogr. 26 (1), 45-53. https://doi.org/10.4319/lo.1981.26.1.0043
  • 10. Broman, E., Asmala, E., Carstensen, J., Pinhassi, J., Dopson, M., 2019. Distinct coastal microbiome populations are associated with autochthonous- and allochthonous-like Dissolved Organic Matter. Front. Microbiol. 10, 2579. https://doi.org/10.3389/fmicb.2019.02579
  • 11. Boyd, T.J., Osburn, C.L., 2004. Changes in CDOM fluorescence from allochthonous and autochthonous sources during tidal mixing and bacterial degradation in two coastal estuaries. Mar. Chem. 89 (1—4), 189-210. https://doi.org/10.1016/j.marchem.2004.02.012
  • 12. Chen, Z., Hu, C., Conmy, R.N., Muller-Karger, F., Swarzenski, P., 2007. Colored dissolved organic matter in Tampa Bay. Florida. Mar. Chem. 104 (1—2), 98-109. https://doi.org/10.1016/j.marchem.2006.12.007
  • 13. Coble, P.G., 2007. Marine Optical Biogeochemistry: The Chemistry of Ocean Color. Chem. Rev. 107 (2), 402-418. https://doi.org/10.1021/cr050350
  • 14. Coble, P.G., Nelson, N., 2009. Optical Analysis of Chromophoric Dissolved Organic Matter. In: Wurl, O. (Ed.), Practical guidelines for the Analysis of Seawater. CRC Press, Boca Raton, 18-27.
  • 15. Das, S., Hazra, S., Lotlikar, A.A., Das, I., Giri, S., Chanda, A., Akhand, A., Maity, S., Kumar, T.S., 2016. Delineating the relationship between chromophoric dissolved organic matter (CDOM) variability and biogeochemical parameters in a shallow continental shelf. Egypt. J. Aquat. Res. 42 (3), 241-248. https://doi.org/10.1016/j.ejar.2016.08.001
  • 16. Das, S., Das, I., Giri, S., Chanda, A., Maity, S., Lotliker, A.A., Kumar, T.S., Akhand, A., Hazra, S., 2017. Chromophoric dissolved organic matter (CDOM) variability over the continental shelf of the northern Bay of Bengal. Oceanologia 59 (3), 271-282. https://doi.org/10.1016/j.oceano.2017.03.002
  • 17. Del Vecchio, R., Blough, N.V., 2004. On the Origin of the Optical Properties of Humic Substances. Environ. Sci. Technol. 38 (14), 3885-3891. https://doi.org/10.1021/es049912h
  • 18. Ferrari, G.M., 2000. The relationship between chromophoric dissolved organic matter and dissolved organic carbon in the European Atlantic coastal area and in the West Mediterranean Sea (Gulf of Lions). Mar. Chem. 70 (4), 339-357. https://doi.org/10.1016/S0304-4203(00)00036-0
  • 19. Gonsior, M., Peake, B., Jaffe, R., Heather, Y., Dickens, A., Kowalczuk, P., 2008. Spectral characterisation of chromophoric dissolved organic matter (CDOM) in a fjord (Doubtful Sound, New Zealand). Aquat. Sci. 70, 397-409. https://doi.org/10.1007/s00027-008-8067-4
  • 20. Granskog, M.A., Macdonald, R.W., Mundy, C.J., Barber, D.G., 2007. Distribution, characteristics and potential impacts of Chromophoric dissolved organic matter (CDOM) in Hudson Strait and Hudson Bay. Canada. Cont. Shelf Res. 27 (15), 2032-2050. https://doi.org/10.1016/j.csr.2007.05.00
  • 21. Granskog, M.A., 2012. Changes in spectral slopes of colored dissolved organic matter absorption with mixing and removal in a terrestrially dominated marine system (Hudson Bay, Canada). Mar. Chem. 134—135, 10-17. https://doi.org/10.1016/j.marchem.2012.02.008
  • 22. Green, Sarah A., Blough, N.V., 1994. Optical absorption and fluorescence properties of chromophoric dissolved organic matter in natural waters. Limnol. Oceanogr. 39 (8), 1903-1916. https://doi.org/10.4319/lo.1994.39.8.1903
  • 23. Grunert, B.K., Mouw, C.B., Ciochetto, A.B., 2018. Characterising CDOM Spectral Variability across Diverse Regions and Spectral Ranges. Global Biogeochem. Cy. 32 (1), 57-77. https://doi.org/10.1002/2017GB005756
  • 24. Guèguen, C., Guo, L., Tanaka, N., 2005. Distributions and characteristics of colored dissolved organic matter in the Western Arctic Ocean. Cont. Shelf Res. 25, 1195-1207. https://doi.org/10.1016/j.csr.2005.01.005
  • 25. Guo, W., Stedmon, C.A., Han, Y., Wu, F., Yu, X., Hu, M., 2007. The conservative and non-conservative behavior of chromophoric dissolved organic matter in Chinese estuarine waters. Mar.Chem. 107 (3), 357-366. https://doi.org/10.1016/j.marchem.2007.03.006
  • 26. Helms, J.R., Stubbins, A., Ritchie, J.D., Minor, E.C., Kieber, D.J., Mopper, K., 2008. Absorption spectral slopes and spectral ratios as indicators of molecular weight, source and photobleaching of hromophoric dissolved organic matter. Limnol. Oceanogr. 53 (3), 955-969. https://doi.org/10.4319/lo.2008.53.3.0955
  • 27. Hickman, A.E., Dutkiewicz, S., Williams, R.G., Follows, M.J., 2010. Modelling the effects of chromatic adaptation on phytoplankton community structure in the oligotrophic ocean. Mar. Ecol. Prog. Ser. 406, 1-17. https://doi.org/10.3354/MEPS08588
  • 28. Kim, G.E., Gnanadesikan, A., Pradal, M.A., 2016. Increased Surface Ocean Heating by Colored Detrital Matter (CDM) Linked to Greater Northern Hemisphere Ice Formation in the GFDL CM2Mc ESM. J. Clim. 29 (24), 9063-9076. https://doi.org/10.1175/JCLI- D- 16- 0053
  • 29. Kirk, J.T.O., 1994. Characteristics of the light field in highly turbid waters: a Monte Carlo study. Limnol. Oceanogr. 39 (3), 702-706. https://doi.org/10.4319/lo.1994.39.3.0702
  • 30. Kostoglidis, A., Pattiaratchi, C.B., Hamilton, D.P., 2005. CDOM and its contribution to the underwater light climate of a shallow, microtidal estuary in south-western Australia. Estuar. Coaat. Shelf Sci. 63 (4), 469-477. https://doi.org/10.1016/j.ecss.2004.11.016
  • 31. Kowalczuk, P., Stedmon, C.A., Markager, S., 2006. Modeling absorption by CDOM in the Baltic Sea from season, salinity and chlorophyll. Mar. Chem. 101, 1-11.
  • 32. Lei, X., Pan, J., Devlin, A.T., 2019. Characteristics of Absorption Spectra of Chromophoric Dissolved Organic Matter in the Pearl River Estuary in Spring. Remote Sens. 11 (13), 1533. https://doi.org/10.3390/rs11131533
  • 33. Li, G., Liu, J., Ma, Y., Zhao, R., Hu, S., Li, Y., Wei, H., Xie, H., 2014. Distribution and spectral characteristics of chromophoric dissolved organic matter in a coastal bay in northern China. J. Environ. Sci. (China) 26 (8), 1585-1595. https://doi.org/10.1016/j.jes.2014.05.025
  • 34. Li, S., Zhang, J., Guo, E., Zhang, F., Ma, Q., Mu, G., 2017. Dynamics and ecological risk assessment of chromophoric dissolved organic matter in the Yinma River Watershed: Rivers, reservoirs, and urban waters. Environ. Res. 158, 245-254. https://doi.org/10.1016/j.envres.2017.06.020
  • 35. Martin, P., Cherukuru, N., Tan, A.S.Y., Sanwlani, N., Mujahid, A., Müller, M., 2018. Distribution and cycling of terrigenous dissolved organic carbon in peatland-draining rivers and coastal waters of Sarawak. Borneo. Biogeosciences 15, 6847-6865. https://doi.org/10.5194/bg-15-6847-2018
  • 36. Menon, H.B., Sangekar, N.P., Lotliker, A.A., Vethamony, P., 2011. Dynamics of chromophoric dissolved organic matter in Mandovi and Zuari estuaries — A study through in situ and satellite data. ISPRS J. Photogramm. Remote Sens. 66 (4), 545-552. https://doi.org/10.1016/j.isprsjprs.2011.02.011
  • 37. Minu, P., Souda, V.P., Baliarsingh, S.K., Dwivedi, R.M., Ali, Y., Ashraf, P.M., 2020. Assessing temporal variation of coloured dissolved organic matter in the coastal waters of South Eastern Arabian Sea. Acta Oceanologica Sinica 39 (1), 102-109. https://doi.org/10.1007/s13131-020-1534-z
  • 38. Mohd Akhir, M.F., Zakaria, N.Z., Tangang, F., 2014. Intermonsoon variation of physical characteristics and current circulation along the east coast of Peninsular Malaysia. Int. J. Oceanogr. 1-9. https://doi.org/10.1155/2014/527587
  • 39. Nelson, N.B., Siegel, D.A., Michaels, A.F., 1998. Seasonal dynamics of colored dissolved material in the Sargasso Sea. Deep Sea Res. Pt. I 45 (6), 931-957. https://doi.org/10.1016/S0967-0637(97)00106-4
  • 40. Nelson, N.B., Siegel, D.A., Carlson, C.A., Swan, C., Smethie, W.M., Khatiwala, S., 2007. Hydrography of chromophoric dissolved organic matter in the North Atlantic. Deep Sea Res. Pt. I 54 (5), 710-731. https://doi.org/10.1016/j.dsr.2007.02.006
  • 41. Nima, C., Frette, Ø., Hamre, B., Stamnes, J.J., Chen, Y.C., Sørensen, K., Norli, M., Xing, Q., Muyimbwa, Y.C., Ssenyonga, T., Stamnes, K.H., Erga, S.R., 2019. CDOM absorption properties of natural water bodies along extreme environmental gradients. Water 11 (10), 1-19. https://doi.org/10.3390/w11101988
  • 42. Osburn, C.L., O’Sullivan, D.W., Boyd, T.J., 2009. Increases in the longwave photobleaching of chromophoric dissolved organic matter in coastal waters. Limnol. Oceanogr. 54 (1). https://doi.org/10.4319/lo.2009.54.1.0145
  • 43. Osburn, C.L., Stedmon, C., 2011. Linking the chemical and optical properties of dissolved organic matter in the Baltic-North Sea transition zone to differentiate three allochthonous inputs. Mar. Chem. 126, 281-294. https://doi.org/10.1016/j.marchem.2011.06.007
  • 44. Osburn, C.L., Handsel, L.T., Mikan, M.P., Paerl, Montgomery, M.T., 2012. Fluorescence tracking of dissolved and particulate organic matter quality in a river-dominated estuary. Environ. Sci. Technol. 46 (16), 8628-8636. https://doi.org/10.1021/es3007723
  • 45. Pavlov, A.K., Stedmon, C.A., Semushin, A.V., Martma, T., Ivanov, B.V., Kowalczuk, P., Granskog, M.A., 2016. Linkages between the circulation and distribution of dissolved organic matter in the White Sea. Arctic Ocean. Cont. Shelf Res. 119, 1-13. https://doi.org/10.1016/j.csr.2016.03.004
  • 46. Sanyal, P., Ray, R., Paul, M, Gupta, V.K., Acharya, A., Bakshi, S., Jana, T.K., Mukhopadhyay, S.K., 2020. Assessing the Dynamics of Dissolved Organic Matter (DOM) in the Coastal Environments Dominated by Mangroves. Indian Sundarbans. Front. Earth Sci. 8, 1-21. https://doi.org/10.3389/feart.2020.00218
  • 47. Shank, G.C., Evans, A., 2011. Distribution and photoreactivity of chromophoric dissolved organic matter in northern Gulf of Mexico shelf waters. Cont. Shelf Res. 31, 1128-1139. https://doi.org/10.1016/j.csr.2011.04.009
  • 48. Shanmugam, P., Varunan, T., Jaiganesh, S.N.N., Sahay, A., Chauhan, P., 2016. Optical assessment of colored dissolved organic matter and its related parameters in dynamic coastal water systems. Estuar. Coast. Shelf Sci. 175, 126-145. https://doi.org/10.1016/j.ecss.2016.03.020
  • 49. Sholkovitz, E.R., 1976. Flocculation of dissolved organic and inorganic matter during the mixing of river water and seawater. Geochim. Cosmochim. Acta 40 (7), 831-845. https://doi.org/10.1016/0016-7037(76)90035-1
  • 50. Spencer, R.G.M., Hernes, P.J., Ruf, R., Baker, A., Dyda, R.Y., Stubbins, A., Six, J., 2010a. Temporal controls on dissolved organic matter and lignin biogeochemistry in a pristine tropical river, Democratic Republic of Congo. J. Geophys. Res. 115 (G03013), 1-12. https://doi.org/10.1029/2009JG001180
  • 51. Stedmon, C.A, Markager, S., 2001. The optics of chromophoric dissolved organic matter (CDOM) in the Greenland Sea: An algorithm for differentiation between marine and terrestrially derived organic matter. Limnol. Oceanogr. 46 (8), 2087-2093. https://doi.org/10.4319/lo.2001.46.8.2087
  • 52. Stedmon, C.A., Markager, S., 2005. Resolving the variability in dissolved organic matter fluorescence in a temperate estuary and its catchment using PARAFAC analysis. Limnol. Oceanogr. 50 (2), 686-697. https://doi.org/10.4319/lo.2005.50.2.0686
  • 53. Stedmon, C.A., Osburn, C.L., Kragh, T., 2010. Tracing water mass mixing in the Baltic — North Sea transition zone using the optical properties of coloured dissolved organic matter. Estuar. Coast. Shelf Sci. 87 (1), 156-162. https://doi.org/10.1016/j.ecss.2009.12.022
  • 54. Stedmon, C.A., Amon, R.M.W., Rinehart, A.J., Walker, S.A., 2011. The supply and characteristics of colored dissolved organic matter (CDOM) in the Arctic Ocean: Pan Arctic trends and differences. Mar. Chem. 124 (1—4), 108-118. https://doi.org/10.1016/j.marchem.2010.12.007
  • 55. Stedmon, C.A., Granskog, M.A., Dodd, P.A., 2015. An approach to estimate the freshwater contribution from glacial melt and precipitation in East Greenland shelf waters using colored dissolved organic matter (CDOM). J. Geophys. Res. 120 (2), 1107-1117. https://doi.org/10.1002/2014JC010501
  • 56. Teong, K.V., Sukarno, K., Chang, J.H.W., Chee, F.P., Ho, C.M., Dayou, J., 2017. The monsoon effect on rainfall and solar radiation in Kota Kinabalu. Trans. Sci. Technol. 4 (4), 460-465.
  • 57. Twardowski, M.S., Donaghay, P.L., 2001. Separating in situ and terrigenous sources of absorption by dissolved materials in coastal waters. J. Geophys. Res. 106, 2545-2560. https://doi.org/10.1029/1999JC000039
  • 58. Winter, A.R., Fish, T.A.E., Playle, R.C., Smith, D.S., Curtis, P.J., 2007. Photodegradation of natural organic matter from diverse freshwater sources. Aquat. Toxicol. 84, 215-222. https://doi.org/10.1016/j.aquatox.2007.04.014
  • 59. Xie, H., Aubry, C., Bélanger, S., Song, G., 2012. The dynamics of absorption coefficients of CDOM and particles in the St. Lawrence estuarine system: Biogeochemical and physical implications. Mar. Chem. 128-129, 44-56. https://doi.org/10.1016/j.marchem.2011.10.001
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f60b8cd3-454d-4e84-b5bc-839129326417
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.