PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Behaviour of eccentrically inclined loaded rectangular foundation on reinforced sand

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study presents the behaviour of model footing resting over unreinforced and reinforced sand bed under different loading conditions carried out experimentally. The parameters investigated in this study includes the number of reinforced layers (N = 0, 1, 2, 3, 4), embedment ratio (Df/B = 0, 0.5, 1.0), eccentric and inclined ratio (e/L, e/B = 0, 0.05, 0.10, 0.15) and (a = 0°, 7°, 14°). The test sand was reinforced with bi-axial geogrid (Bx20/20). The test results show that the ultimate bearing capacities decrease with axial eccentricity and inclination of applied loads. The test results also show that the depth of model footing increase zero to B (B = width of model footing), an increase of ultimate bearing capacity (UBC) approximated at 93%. Similarly, the multi-layered geogrid reinforced sand (N = 0 to 4) increases the UBC by about 75%. The bearing capacity ratio (BCR) of the model footing increases with an increasing load eccentricity to the core boundary of footing; if the load eccentricities increase continuity, the BCR decreases. The tilt of the model footing is increased by increasing the eccentricity and decreases with increasing the number of reinforcing layers.
Wydawca
Rocznik
Strony
74--89
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
autor
  • Department of Civil Engineering, National Institute of Technology Kurukshetra, India-136119
autor
  • Department of Civil Engineering, National Institute of Technology Kurukshetra, India-136119
Bibliografia
  • [1] Badakhshan, E., Noorzad, A. (2015). Load eccentricity effects on the behaviour of circular footings reinforced with geogrid sheets, J Rock MechGeotechEng, 7, pp. 691–9. https://doi.org/10.1016/j.jrmge.2015.08.006
  • [2] Badakhshan, E., Noorzad, A. (2017). Effect of footing shape and load eccentricity on the behaviour of the geosynthetics reinforced sand bed, GeotextGeomemb, 45, pp. 58–67. https://doi.org/10.1016/j.geotexmem.2016.11.007
  • [3] Behera, R.N. (2013). Behaviour of shallow strip foundation on granular soil under eccentrically inclined loads, Ph.D. Thesis, National Institute of Technology Rourkela, India.
  • [4] Boushehrian, J.H., Hataf, N. (2003). Experimental and numerical investigation of the bearing capacity of model circular and ring footing on reinforced sand, GeotextGeomemb, 21, pp. 241–256.
  • [5] Das, B.M., Omar, M.T. (1994). The effects of foundation width on model tests for the bearing capacity of sand with geogrid reinforcement, GeotechGeolEng, 12, pp. 133–141.
  • [6] Foye, K.C., Salgado, R., Scott, B. (2006). Assessment of variable uncertainties for the reliability-based design of the foundation, J Geo Geoenviron Eng., 131(9), pp. 1197–1207. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:9(1197)
  • [7] Ganesh, R., Khuntia, S., Sahoo, J.P. (2016). Bearing capacity of shallow strip footing in the sand under eccentric and oblique loads, Int J Geomech, 17(4), pp. 06016028. https://doi.org/10.1061/(ASCE)GM.1943-5622.000079
  • [8] Guido, et al. (1986). Comparison of geogrid and geotextile reinforced earth slabs, Can Geotech J, 23(4), pp. 435–440.
  • [9] Hjiaj, M., Lyamin, A.V., Sloan, S.W. (2004). Bearing capacity of a cohesive-frictional soil under non-eccentric inclined loading, ComputGeotech. 31, pp. 491–516. https://doi.org/10.1016/j.compgeo.2004.06.001
  • [10] Krabbenhoft, S., Damkilde, L., Krabbenhoft, K. (2014). Bearing capacity of strip footings on cohesionless soils subjected to eccentric and inclined load, Int J Geomech, pp. 04014003–18 10.1061/(ASCE)GM.1943-5622.0000332,04014003
  • [11] Kumar, A., Ohri, M.L., Bansal, R.K. (2006). Bearing capacity test of strip footings on reinforced layered soil, GeotechGeolEng, 25, pp. 139–150. https://doi.org/10.1007/s10706-006-0011-6
  • [12] Kumar, A., Walia, B.S. (2006). Bearing capacity of square footing on reinforced layered soil, J GeotechGeolEng, 24, pp. 1001–1008.
  • [13] Latha, G.M., Somwanshi, A. (2009). Bearing capacity of square footing on geosynthetic reinforced sand, GeotextGeomemb, 27, pp. 281–294. https://doi.org/10.1016/j.geotexmem.2009.02.001
  • [14] Loukidis, D., Salgado, R. (2009). Bearing capacity of the strip and circular footing in sand using finite element, ComputGeotech, 36, pp. 871–879. https://doi.org/10.1016/j.compgeo.2009.01.012
  • [15] Meyerhof, G.G. (1953). An Investigation for the Foundations of a Bridge on Dense Sand. Proceedings of the 3rd International Conference on Soil Mechanics and Foundation Engineering, 2, pp. 66–70.
  • [16] Michalowski, R.L. (2004). Limit load on reinforced foundation soils, J GeotechGeoenvironEng, ASCE, 130(4), pp. 381–390.
  • [17] Nazir, A.K., Azzam, W.R. (2011). Improving the bearing capacity of footing soft clay with sand pile with/without skirt, Alex Eng J, 49, pp. 371–377. https://doi.org/10.1016/j.aej.2010.06.002
  • [18] Omar, et al. (1993). Ultimate bearing capacity of shallow foundation on sand with geogrid reinforcement, Can Geotech J, 30(3), pp. 545–549.
  • [19] Ornek, M. (2014). Estimation of ultimate loads of eccentric-inclined loaded strip footing rested on sandy soils, Neural Computing & Applications, 25, pp. 39–54. https://doi.org/10.1007/s00521-013-1444-5
  • [20] Padmini, D., Ilamparuthi, K.K., Sudheer, K.P. (2007). Ultimate bearing capacity of shallow foundations on cohesionless soil using neuro-fuzzy models, J ComputGeotech, 35(1), pp. 33–46. https://doi.org/10.1016/j.compgeo.2007.03.001
  • [21] Patra, C.R., Behera, R.N., Shivakugan, N., Das, B.M. (2012). Ultimate bearing capacity of shallow strip foundation under eccentrically inclined load Part-1. Int J Geotech Eng, 6.
  • [22] Patra, C.R., Das, B.M., Atalar, C. (2005). Bearing capacity of embedded strip foundation on geogrid-reinforced sand, GeotextGeomemb, 23, pp. 454–462.
  • [23] Patra, C.R., Das, B.M., Bhoi, M., Shin, E.C. (2006). Eccentricity loaded strip foundation on geogrid-reinforced sand, GeotextGeomemb, 24(4), pp. 254–259.
  • [24] Sadoglu, E., Cure, E., Moroglu, B., Uzuner, B.A. (2009) Ultimate loads for eccentrically loaded model shallow strip footings on geotextile-reinforced sand, GeotextGeomemb, 27(3), pp. 176–82.
  • [25] Sawwaf, E.l., Mostafa, A. (2007). Behaviour of strip footing on geogrid-reinforced sand over a soft clay slope, Geotext and Geomemb, 25(1), pp. 50–60.
  • [26] Sawwaf, M.E., Nazir, A. (2012). Behaviour of eccentrically loaded small-scale ring footing resting on reinforced layer soil, J GeotechGeoenvironEng, ASCE, 138(3), pp. 376–384. https://doi.org/10.1061/(ASCE)G.T.1943-5606.0000593
  • [27] Shin, E.C., Das, B.M. (2000). Experimental study of bearing capacity of a strip foundation on geogrid reinforced sand, GeosynInt J, 7(1), pp. 59–71.
  • [28] Shin, E.C., Das, B.M., Lee, E.S., Atalar, C. (2002). Bearing capacity of strip foundation on geogrid reinforced sand, GeotechGeolEng, 20, pp. 169–180.
  • [29] Sireesh, S., Sitharam, T.G., Dash, S.K. (2009). Bearing capacity of circular footing on geocell-sand mattress overlaying clay bed with a void, GeotextGeomemb, 27, pp. 89–98.
  • [30] Trautmann, C.H., Kulhawy, F.H. (1988). Uplift load-displacement behavior of spread foundations, J GeotechEng, ASCE, 114(2), pp. 168–183.
  • [31] Yoo, C. (2001). Laboratory investigation of bearing capacity behaviour of strip footing on a geogrid-reinforced sand slope, GeotextGeomemb, 19(5), 279–298.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f609d5e0-4f27-4a77-8725-f81bec8a5fa5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.