Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, the problem of backward compatibility of active disturbance rejection control (ADRC) is investigated. The goal is to contextualize ADRC to deliver its interpretations from the established field of linear control systems. For this study, a control algorithm, denoted here as integral disturbance rejection control (IDRC), is considered that combines classical state-feedback control with an integral compensator. At first, an interpretation of ADRC is involved in terms of existing state-space control approaches. Next, a transition to the frequency domain is performed, which is justified as a significant part of practical control engineering is conducted in that domain. For assumed specific plant structures, both ADRC and IDRC are then holistically compared in terms of transfer function representation and frequency characteristics, as well as steady-state convergence conditions. Such a juxtaposition helps to highlight the similarities and differences of both approaches, whereas the utilized bandwidth parameterization is shown to bring the control system to the same form, thus indicating some interesting practical aspects. Finally, the theoretical results concerning both considered control structures are validated in a set of numerical simulations and experiments conducted on a laboratory hardware testbed.
Rocznik
Tom
Strony
art. no. e152608
Opis fizyczny
Bibliogr. 31 poz., rys., tab., wykr.
Twórcy
autor
- Faculty of Control, Robotics and Electrical Engineering, Institute of Robotics and Machine Intelligence, Poznan University of Technology, Piotrowo 3a, 60-965 Poznan, Poland
autor
- Faculty of Control, Robotics and Electrical Engineering, Institute of Robotics and Machine Intelligence, Poznan University of Technology, Piotrowo 3a, 60-965 Poznan, Poland
autor
- Faculty of Automatic Control, Electronics and Computer Science, Department of Automatic Control and Robotics, Silesian Universityof Technology, Akademicka 16, 44-100, Gliwice, Poland
autor
- Faculty of Control, Robotics and Electrical Engineering, Institute of Automatic Control and Robotics, Poznan University of Technology, Piotrowo 3a, 60-965 Poznan, Poland
autor
- Faculty of Control, Robotics and Electrical Engineering, Institute of Robotics and Machine Intelligence, Poznan University of Technology, Piotrowo 3a, 60-965 Poznan, Poland
Bibliografia
- [1] E. Sariyildiz, R. Oboe, and K. Ohnishi, “Disturbance observer-based robust control and its applications: 35th anniversary overview,” IEEE Trans. Ind. Electron., vol. 67, no. 3, pp. 2042–2053, 2020, doi: 10.1109/TIE.2019.2903752.
- [2] X. Zhang, X. Zhang, W. Xue, and B. Xin, “An overview on recent progress of extended state observers for uncertain systems: methods, theory, and applications,” Adv. Control Appl., vol. 3, no. 2, p. e89, 2021, doi: 10.1002/adc2.89.
- [3] J. Han, “From PID to active disturbance rejection control,” IEEE Trans. Ind. Electron., vol. 56, no. 3, pp. 900–906, 2009, doi: 10.1109/TIE.2008.2011621.
- [4] Z. Gao, “Active disturbance rejection control: From an enduring idea to an emerging technology,” in International Workshop on Robot Motion and Control, 2015, pp. 269–282, doi: 10.1109/RoMoCo.2015.7219747.
- [5] M. Stankovic, H. Ting, and R. Madonski, “From PID to ADRC and back: Expressing error-based active disturbance rejection control schemes as standard industrial 1DOF and 2DOF controllers,” Asian J. Control, vol. 26, no. 6, pp. 2796–2806, 2024, doi: 10.1002/asjc.3373.
- [6] M. Huba and Z. Gao, “Uncovering disturbance observer and ultra-local plant models in series PI controllers,” Symmetry, vol. 14, no. 4, p. 640, 2022, doi: 10.3390/sym14040640.
- [7] R. Madonski, G. Herbst, and M. Stankovic, “ADRC in output and error form: connection, equivalence, performance,” Control Theory Technol., vol. 21, pp. 56–71, 2023, doi: 10.1007/s11768-023-00129-y.
- [8] G. Herbst and R. Madonski, “Tuning and implementation variants of discrete-time ADRC,” Control Theory Technol., vol. 21, no. 1, pp. 72–88, 2023, doi: 10.1007/s11768-023-00127-0.
- [9] M. Huba, “Disturbance observer in PID controllers for first-order time-delayed systems,” IFAC-PapersOnLine, vol. 55, no. 17, pp. 19–24, 2022, doi: 10.1016/j.ifacol.2022.09.219.
- [10] S. Zhong, Y. Huang, and L. Guo, “A parameter formula connecting PID and ADRC,” Sci. China Inf. Sci., vol. 63, no. 9, p. 192203, 2020, doi: 10.1007/s11432-019-2712-7.
- [11] Z. Gao, “Scaling and bandwidth-parameterization based controller tuning,” in American Control Conference, 2003, pp. 4989–4996, doi: 10.1109/ACC.2003.1242516.
- [12] Z. Wu, Makeximu, J. Yuan, Y. Liu, D. Li, and Y. Chen, “A synthesis method for first-order active disturbance rejection controllers: procedures and field tests,” Control Eng. Practice, vol. 127, p. 105286, 2022, doi: 10.1016/j.conengprac.2022.105286.
- [13] S. Zhong, Y. Huang, and L. Guo, “An ADRC-based PID tuning rule,” Int. J. Robust Nonlinear Control, vol. 32, no. 18, pp. 9542–9555, 2022, doi: 10.1002/rnc.5845.
- [14] H. Sira-Ramirez, E.W. Zurita-Bustamante, and C. Huang, “Equivalence among flat filters, dirty derivative-based PID controllers, ADRC, and integral reconstructor-based sliding mode control,” IEEE Trans. Control Syst. Technol., vol. 28, no. 5, pp. 1696–1710, 2020, doi: 10.1109/TCST.2019.2919822.
- [15] H. Sira-Ramirez and E. Zurita-Bustamante, “On the equivalence between ADRC and flat filter based controllers: a frequency domain approach,” Control Eng. Practice, vol. 107, p. 104656, 2021, doi: 10.1016/j.conengprac.2020.104656.
- [16] S. Ahmad and A. Ali, “Unified disturbance-estimation-based control and equivalence with IMC and PID: case study on a DC–DC boost converter,” IEEE Trans. Ind. Electron., vol. 68, no. 6, pp. 5122–5132, 2021, doi: 10.1109/TIE.2020.2987269.
- [17] R. Chi, H. Zhang, H. Li, B. Huang, and Z. Hou, “Data-driven dynamic internal model control,” IEEE Trans. Cybern., vol. 54, no. 9, pp. 5347–5359, 2024, doi: 10.1109/TCYB.2024.3387409.
- [18] Z. Gao and Y. Huang, “Connecting theory and practice with ADRC,” Control Theory Technol., vol. 21, no. 1, pp. 1–3, 2023, doi: 10.1007/s11768-023-00133-2.
- [19] K. Aida and T. Kitamori, “Design of a PI-type state feedback optimal servo system,” Int. J. Control, vol. 52, no. 3, pp. 613–625, 1990, 10.1080/00207179008953556.
- [20] Y. Zhao, Y. Huang, and Z. Gao, “On tuning of ADRC with competing design indices: a quantitative study,” Control Theory Technol., vol. 21, no. 1, pp. 16–33, 2023, doi: 10.1007/s11768-023-00136-z.
- [21] J.A. Gouvêa, L.M. Fernandes, M.F.Pinto, and A.R. Zachi, “Variant adrc design paradigm for controlling uncertain dynamical systems,” Eur. J. Control, vol. 72, p. 100822, 2023, doi: 10.1016/j.ejcon.2023.100822.
- [22] R. Patelski and D. Pazderski, “Improving the active disturbance rejection controller tracking quality by the input-gain underestimation for a second-order plant,” Electronics, vol. 10, no. 8, p. 907, 2021, doi: 10.3390/electronics10080907.
- [23] H. Jin and Z. Gao, “On the notions of normality, locality, and operational stability in ADRC,” Control Theory Technol., vol. 21, no. 1, pp. 97–109, 2023, doi: 10.1007/s11768-023-00131-4.
- [24] K.J. Åström and R. Murray, Feedback systems: An introduction for scientists and engineers. Princeton University Press, 2008.
- [25] G. Herbst, “Transfer function analysis and implementation of active disturbance rejection control,” Control Theory Technol., vol. 19, pp. 19–34, 2021, doi: 10.1007/s11768-021-00031-5.
- [26] M. Hamdoun, M.B. Abdallah, M. Ayadi, F. Rotella, and I. Zambettakis, “Functional observer-based feedback controller for ball balancing table,” SN Appl. Sci., vol. 3, p. 614, 2021, doi: 10.1007/s42452-021-04590-9.
- [27] Z. Wu, G. Shi, D. Li, Y. Liu, and Y. Chen, “Active disturbance rejection control design for high-order integral systems,” ISA Trans., vol. 125, pp. 560–570, 2022, doi: 10.1016/j.isatra.2021.06.038.
- [28] M. Mrotek and J. Michalski, “Trajectory tracking with generalized active disturbance rejection control using kalman filter-based extended state observer,” in International Conference on Methods and Models in Automation and Robotics. IEEE, 2024, pp. 316–321, doi: 10.1109/MMAR62187.2024.10680815.
- [29] J. Michalski, M. Mrotek, M. Retinger, and P. Kozierski, “Adaptive active disturbance rejection control with recursive parameter identification,” Electronics, vol. 13, no. 16, p. 3114, 2024, doi: 10.3390/electronics13163114.
- [30] J. Michalski, M. Mrotek, and P. Kozierski, “Kalman filter as an alternative to extended state observer in ADRC control algorithm,” Pomiary Automatyka Robotyka, vol. 28, no. 1, pp. 31–39, 2024, doi: 10.14313/PAR_251/31, (in Polish).
- [31] J. Michalski, M. Mrotek, and S. Brock, “Transfer function analysis and algorithm order reduction for active disturbance rejection control,” in International Conference on Methods and Models in Automation and Robotics. IEEE, 2024, pp. 591–596, doi: 10.1109/MMAR62187.2024.10680796.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f60915af-4b77-4812-b1e5-f71b6d5284bf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.