Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, we study dynamical systems induced by a certain group [formula] embedded in the Hecke algebra H(Gp) induced by the generalized linear group Gp = GL2(Qp) over the p-adic number fields Qp for a fixed prime p. We study fundamental properties of such dynamical systems and the corresponding crossed product algebras in terms ol free probability on the Hecke algebra H(Gp).
Czasopismo
Rocznik
Tom
Strony
337--373
Opis fizyczny
Bibliogr. 15 poz.
Twórcy
autor
- St. Ambrose University Department of Mathematics and Statistics 421 Ambrose Hall, 518 W. Locust St. Davenport, Iowa, 52803, USA
Bibliografia
- [1] M. Aschbacher, Finite Group Theory, Cambridge Univ. Press, Cambridge, 2000.
- [2] I. Cho, Operators induced by prime numbers, Methods Appl. Math. 19 (2013) 4, 313-340.
- [3] I. Cho, p-adic Banach space operators and adelic Banach space operators, Opuscula Math. 34 (2014) 1, 29-65.
- [4] I. Cho, Representations and corresponding operators induced Hecke algebras, Complex Anal. Oper. Theory, DOI: 10.1007/sll785-014-0418-7, (2014).
- [5] I. Cho, Dynamical systems on arithmetic functions determined by primes, Banach J. Math. Anal. 9 (2015) 1, 173-215.
- [6] I. Cho, Free probability on Hecke algebras and certain group C* -algebras induced by Hecke algebras, Opuscula Math. 36 (2016) 1, 153-187.
- [7] I. Cho, T. Gillespie, Free probability on the Hecke algebra, Compl. Anal. Oper. Theory, DOI: 10.1007/sll785-014-0403-l, (2015).
- [8] I. Cho, P.E.T. Jorgensen, Krein-Space Operators Induced by Dirichlet Characters, Con-temp. Math.: Commutative and Noncommutative Harmonic Analysis and Applications, Amer. Math. Soc. (2014), 3-33.
- [9] I. Cho, P.E.T. Jorgensen, Matrices induced by arithmetic functions, primes, and groupoid actions of directed graphs, Special Matrices (2015), to appear.
- [10] T. Gillespie, Superposition of zeroes of automorphic L-functions and functoriality, Univ. of Iowa, PhD Thesis (2010).
- [11] T. Gillespie, Prime number theorems for Rankin-Selberg L-functions over number fields, Sci. China Math. 54 (2011) 1, 35-46.
- [12] F. Radulescu, Random matrices, amalgamated free products and subfactors of the C*-algebra of a free group of nonsingular index, Invent. Math. 115 (1994), 347-389.
- [13] R. Speicher, Combinatorial theory of the free product with amalgamation and operator-valued free probability theory, Amer. Math. Soc. Mem. 132 (1998) 627.
- [14] V.S. Vladimirov, LV. Volovich, E.I. Zelenov, p-Adic Analysis and Mathematical Physics, Ser. Soviet & East European Math., vol. 1, World Scientific, 1994.
- [15] D. Voiculescu, K. Dykemma, A. Nica, Free Random Variables, CRM Monograph Series, vol. 1, 1992.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f6067bf2-8f8a-4039-a9ea-c5c839c46c06