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Abstract. In this paper, we study dynamical systems induced by a certain group TK
N em-

bedded in the Hecke algebra H(Gp) induced by the generalized linear group Gp = GL2(Qp)
over the p-adic number fields Qp for a fixed prime p. We study fundamental properties of
such dynamical systems and the corresponding crossed product algebras in terms of free
probability on the Hecke algebra H(Gp).

Keywords: free probability, free moments, free cumulants, Hecke algebra, normal Hecke
subalgebra, free probability spaces, representations, operators, Hilbert spaces, dynamical
systems, crossed product algebras.

Mathematics Subject Classification: 05E15, 11R47, 46L10, 47L30, 47L55.

1. INTRODUCTION

We have considered how primes (or prime numbers) act on operator algebras. The
relations between primes and operator algebras have been studied in various different
approaches. For instance, in [2], we studied how primes act “on” certain von Neumann
algebras generated by p -adic and Adelic measure spaces. Also, the primes as operators
in certain von Neumann algebras, have been studied in [3].

Independently, in [5] and [6], we have studied primes as linear functionals acting
on arithmetic functions, i.e., each prime p induces a free-probabilistic structure (A, gp)
on the algebra A of all arithmetic functions. In such a case, one can understand arith-
metic functions as Krein-space operators (for fixed primes), via certain representations
(see [8]).

These studies are all motivated by well-known number-theoretic results (e.g., [1])
under free probability techniques (e.g., [12, 13] and [15]).

In modern number theory and its applications, p-adic analysis provides important
tools for studying geometry at small distance (e.g., [14]). it is not only interested in
various mathematical fields but also in related scientific fields (e.g., [4,8]). The p-adic
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number fields Qp and the Adele ring AQ play key roles in modern number theory;
analytic number theory, L-function theory, and algebraic geometry (e.g., [2, 10] and
[11]). Also, analysis on such Adelic structures gives a way of understanding vector
analysis under a non-Archimedean metric (e.g., [2, 3, 7], and [8]).

In [7], the author and Gillespie consider free-probabilistic models on the classical
Hecke algebra H(Gp), where Gp is the generalized linear group GL2(Qp) over the
p-adic number field Qp, for primes p, and characterize the inner freeness of H(Gp).
In [4], the author constructed suitable representations of Hecke algebras under our
free-probabilistic settings. Under these representations, each element of H(Gp) is
regarded as an operator on a certain Hilbert space Hp. The spectral properties;
self-adjointness, projection-property, normality, isometry-property, unitarity and hy-
ponormality; of such operators have been considered in [4]. As continuation, in [6],
we concentrated on studying partial isometries induced by generating elements of
the Hecke algebra H(Gp) under a representation introduced in [4]. In particular,
we realize that there are partial isometries having same initial and final projections
on Hp, and hence, they generate groups acting on “subspaces” of Hp, i.e., such partial
isometries can be understood as unitaries on the “subspaces.” Groups generated by
the partial isometries and corresponding C∗-algebras have been considered in [6].

In this paper, we keep study dynamical systems induced by groups generated by
partial isometries in the sense of [4], and their crossed product algebras. In particular,
we study free probability, preserving number-theoretic data, on these crossed product
algebras.

2. PRELIMINARIES

In this section, we briefly introduce fundamental background concepts we will use in
the text.

2.1. HECKE ALGEBRAS AND FREE PROBABILITY

We refer readers [4] and [7] for more detailed information about motivations, defini-
tions and background of our series of study: free probability, representation theory
and operator algebra theory on Hecke algebras over p-adic number fields for primes
p. We will use the same definitions and notations used in [4] and [7]. Of course, in the
following text, we will introduce them precisely.

Also, readers can check fundamental analytic-and-combinatorial free probability
theory from [13] and [15] (and the cited papers therein). Free probability is understood
as the noncommutative operator-algebraic version of classical probability theory. The
classical independence is replaces by the freeness. It has various applications not only
in pure mathematics (e.g., [12]) but also in related topics in physics (e.g., [5, 6, 9]
and [8]). In particular, we will use the combinatorial free probabilistic approach of
Speicher (e.g., [13]). Free moments and free cumulants of operators, or free random
variables, will be computed in the following text, as free-distributional data of the
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operators. The precise definitions and computational techniques can be found in [13]
and the papers cited therein.

2.2. DYNAMICAL SYSTEMS INDUCED BY ALGEBRAIC STRUCTURES

In this section, we briefly discuss dynamical systems induced by algebraic structures
equipped with single binary operations; for instance, semigroups, or monoids, or
groups, or groupoids, etc.

Let Γ = (Γ, ·) be an arbitrary algebraic structure equipped with its single binary
operation (·). We will handle Γ arbitrarily in this section, but one may assume now Γ
is a group. And let A be an algebra over C. One may / can regard A as a topological
algebra. Assume further that there exists an action λ of Γ acting on A, i.e., the images
λ(w), denoted by λw of all w ∈ Γ are well-defined functions on A, satisfying

λw1w2 = λw1 ◦ λw2 for all w1, w2 ∈ Γ, (2.1)

where (◦) means the usual functional composition.
Under the setting that A is an algebra over C, one may restrict his / her ideas to

the cases where λw are linear transformations on A. Also, if A has its topology, then
one may assume λw’s are continuous for the topology of A for all w ∈ Γ.
Definition 2.1. The triple (Γ, A, λ) is called the dynamical system of Γ acting on A
via λ.

Whenever we have fixed such a dynamical system (Γ, A, λ), if λ induces a linear
transformations on A, then one can construct the crossed product algebra,

AΓ = A×λ Γ (2.2)

induced by the dynamical system (Γ, A, λ), as an algebra generated by both A and
λ(Γ) satisfying λ-relation (2.3) below:

for any a1w1, a2w2 ∈ AΓ, with a1, a2 ∈ A and w1, w2 ∈ Γ,
(a1w1) (a2w2) = (a1λw1(a2))w1w2

(2.3)

for a1λ1(a2) ∈ A and w1w2 ∈ Γ.
If Γ is a group (with group-inverses), or a groupoid (with groupoidal inverses),

and if A is a ∗-algebra with its adjoint:

a∗∗ = a in A for all a ∈ A,

and
(a1 + a2)∗ = a∗1a

∗
2 and (a1a2)∗ = a∗2a

∗
1

in A for all a1, a2 ∈ A, then we need an additional condition (2.4) for the λ-relation:

for any aw ∈ AΓ with a ∈ A and w ∈ Γ
(aw)∗ = λw−1(a∗)w−1,

(2.4)

where a∗ is the adjoint of a in A and w−1 is the inverse of w in Γ.
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Definition 2.2. Let (Γ, A, λ) be a dynamical system induced by an algebraic struc-
ture Γ equipped with a single binary operation, and let AΓ = A×λ Γ be an algebra in
the sense of (2.2), satisfying the λ-relation (2.3). Then it is called the crossed product
algebra induced by (Γ, A, λ). If Γ has its invertibility and if A is a ∗-algebra over C,
then the λ-relation implies both (2.3) and (2.4).

3. FREE-PROBABILISTIC MODELS ON H(Gp)

In this section, we review free-probabilistic structures obtained in [4]. Moreover, some
of the main results of [4] and [7] are introduced for our later results.

3.1. HECKE ALGEBRAS H(Gp)

For a fixed prime p, assume we have the corresponding generalized linear group
Gp = GL2(Qp) over the p-adic number field Qp, and the Hecke algebra H(Gp) is
defined by the algebra,

H(Gp) = C∗







f =

N∑

j=1
tj χxjK

∣∣∣∣∣∣∣∣

N ∈ N, and tj ∈ C, and
K is a compact subgroup of Gp,

depending on f,
where xj ∈ Gp, for all j = 1, . . . , N






 , (3.1)

where C∗[X] mean algebras generated by X under the usual functional addition, and
convolution (∗) in the sense that

f1 ∗ f2(g) =
∫

Gp

f1(x)f2(x−1g)dµp(g) (3.2)

for all f1, f2 ∈ H(Gp) and g ∈ Gp, and where χY mean characteristic functions of
µp-measurable subsets Y of Gp, where µp is the both left-and-right invariant Haar
measure on Gp (e.g., see [4, 6] and [7]). The subset

Xp =




f =

N∑

j=1
tj χxjK

∣∣∣∣∣∣∣∣

N ∈ N, and tj ∈ C, and
K is a compact subgroup of Gp,

depending on f,
where xj ∈ Gp, for all j = 1, . . . , N





(3.3)

of the Hecke algebra H(Gp) is said to be the generating set of H(Gp), and we call
elements of Xp, generating elements of H(Gp), i.e.,

H(Gp) = C∗[Xp].

Thus, one may re-write

H(Gp) =





N∑

j=1
tj χxjKj

∣∣∣∣∣∣

N ∈ N, and tj ∈ C, and
Kj are compact subgroups of Gp,
where xj ∈ Gp, for all j = 1, . . . , N



 , (3.4)

set-theoretically.
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Take now elements χx1K1 , χx2K2 in H(Gp) for xj ∈ Gp and compact-open sub-
groups Kj of Gp for j = 1, 2. Then they satisfy that

(χx1K1 ∗ χx2K2) (g) =
∫

Gp

χx1K1(x)χx2K2(x−1g)dµp(x)

=
∫

Gp

χx1K1(x)χx2K2g−1(x−1)dµp(x)

=
∫

Gp

χx1K1(x)χgK2x
−1
2

(x)dµp(x)

since x−1 ∈ x2K2g
−1 if and only if x ∈ gK2x

−1
2

=
∫

Gp

χx1K1∩gK2x
−1
2

(x)dµp(x)

= µp
(
x1K1 ∩ gK2x

−1
2
)

by (3.2), for all g ∈ Gp, i.e.,

(χx1K1 ∗ χx2K2) (g) = µp
(
x1K1 ∩ gK2x

−1
2
)

(3.5)

for all g ∈ Gp.
Without loss of generality, one may understand

χxK(g) = µp(xK ∩ gK)
µp(xK) = µp(xK ∩ gK)

µp(K) . (3.6)

Recall that a subgroup K is normal in an arbitrary group Γ if gK = Kg for all
g ∈ Γ. As usual, we denote this normal subgroup-inclusion by K CΓ. Define a subset
Yp of the generating set Xp of H(Gp) by

Yp
def=





N∑

j=1
tjχxjK ∈ Xp |K CGp



 . (3.7)

One may have a subalgebra

HYp
def= C∗[Yp] of H(Gp). (3.8)

Theorem 3.1 (see [4] and [7]). Let χxjKj , exjKj ∈ HYp , where xj ∈ Gp and KjCGp
compact-open, for j = 1, 2. Then

χx1K1 ∗ χx2K2 = µp(K1 ∩K2)χx1x2K1K2 , (3.9)

where K1K2 CGp is the product group of K1 and K2.
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Definition 3.2. Let Yp be the subset (3.7) of the generating set Xp, and let
HYp = C∗[Yp] be the subset (3.8) of the Hecke algebra H(Gp), for a fixed prime p.
Then we call Yp and HYp , the normal sub-generating set of Xp, and the normal Hecke
subalgebra of H(Gp), respectively.

3.2. ON THE NORMAL HECKE SUBALGEBRA HYp OF H(Gp)

In this section, we concentrate on studying the normal Hecke subalgebra HYp of the
Hecke algebraH(Gp), in the sense of (3.8), where Yp means the normal sub-generating
set (3.7) of the generating set Xp of H(Gp), for a fixed prime p.

For convenience, denote
N∏

j=1
xj and

N
×
j=1

Kj simply by

x1,...,N and K1,...,N , respectively,

for all N ∈ N. Also, we will let

Ko
1,...,N = K1,...,(N−1) ∩KN

for all N ∈ N \ {1}. We will use the same notations throughout this paper.
We obtain the following general computations.

Proposition 3.3 ([7]). Let χxjKj , exjKj be generating elements of the normal Hecke
subalgebra HYp , for j ∈ N. Then

N∗
j=1

χxjKj =
(

N∏

l=2
µp(Ko

1,...,l)
)
χx1,...,NK1,...,N (3.10)

for all N ∈ N.

Denote the convolution f∗ . . . ∗f of n-copies of f simply by f (n) for all n ∈ N and
f ∈ H(Gp).

3.3. FREE-PROBABILISTIC MODELS ON HYp
Let H(Gp) be the Hecke algebra (3.1) generated by the generalized linear group
Gp = GL2(Qp) over the p-adic number field Qp for a fixed prime p. From Section 3.1
we start to understand this algebra H(Gp) as an algebra C∗[Xp] generated by Xp of
(3.3), consisting of C-valued functions f formed by

f =
N∑

j=1
tjχxjK for tj ∈ C, xj ∈ Gp,

where K is a compact-open subgroup of Gp for N ∈ N. So, to consider
free-distributional data, it suffices to concentrate on generating elements χxK ’s for
x ∈ Gp, and compact-open subgroups K of Gp.



Certain group dynamical systems induced by Hecke algebras 343

In this section, we further restrict our interests to such elements in the normal
Hecke subalgebra HYp (3.8) of H(Gp).

Let up be the group-identity of Gp, i.e.,

up =
(

1 0
0 1

)
∈ Gp = GL2(Qp).

For the fixed up, define now a linear functional ϕp on HYp by

ϕp (f) def= f(up) for f ∈ HYp . (3.11)

Clearly, the morphism ϕp is a well-defined point-evaluation linear functional on
HYp , and hence, the pair (HYp , ϕp) forms a free probability space in the sense of [13]
and [15].
Definition 3.4. We call the free probability space (HYp , ϕp), the normal Hecke prob-
ability space (for the prime p).

Then we obtain the following fundamental free-moment computations.
Proposition 3.5. Let χxjKj , exjKj be generating free random variables in the normal
Hecke probability space (HYp , ϕp) for all j ∈ N. Then

ϕp

(
N∗
j=1

χxjKj

)
=

(
N∏
j=2

µp(Ko
1,...,j)

)
(µp(x1,...,NK1,...,N ∩ upK1,...,N ))

µp(K1,...,N ) (3.12)

for all N ∈ N.

Proof. Indeed, one can get that

ϕp

(
N∗
j=1

χxjKj

)
= ϕp

(( N∏

j=2
µp(Ko

1,...,j)
)
χx1,...,NK1,...,N

)

by (3.10)

=
( N∏

j=2
µp(Ko

1,...,j)
) (
χx1,...,NK1,...,N (up)

)

by (3.11)

=
( N∏

j=2
µp(Ko

1,...,j)
)(µp(x1,...,NK1,...,N ∩ upK1,...,N )

µp(K1,...,N )

)

by (3.6)

=

(∏N
j=2 µp(Ko

1,...,j)
)

(µp(x1,...,NK1,...,N ∩ upK1,...,N ))
µp(K1,...,N ) .
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Let χx1K1 , . . . , χxNKN ∈ (HYp , ϕp) for N ∈ N. Then the joint free cumulants can
be obtained by

kpN (χx1K1 , . . . , χxNKN ) =
∑

π∈NC(N)

(∏

V ∈π
ϕp

(
∗
j∈V

χxijKij

)
µ
(
0|V |, 1|V |

)
)

by the free-probabilistic Möbius inversion of [13]

=
∑

π∈NC(N)


 ∏

V=(i1,...,i|V |)∈π
(µp(V ))µ

(
0|V |, 1|V |

)

 , (3.13)

by (3.12), where

µp(V ) =
µp(Ko

i1,i2
) . . . µp(Ko

i1,...,i|V |)µp(xi1,...,i|V |Ki1,...,i|V | ∩Ki1,...,i|V |)
µp(Ki1,...,i|V |)

,

are the block-depending free moments for all V ∈ π and all π ∈ NC(N), where kpn(. . .)
means free cumulant in terms of ϕp as in [13].

By the above computation (3.13), we obtain the following freeness condition on
the normal Hecke subalgebra HYp . And this freeness condition shows that the classical
independence guarantees our freeness.

Theorem 3.6 ([7]). Let fj = χKj be free random variables in the normal Hecke free
probability space (HYp , ϕp) for j = 1, 2. Then

f1 and f2 are free in (HYp , ϕp)⇐⇒ µp(Ko
1,2) = µp(K1)µp(K2). (3.14)

The proof of (3.14) is done, by computing “mixed” free cumulants of f1 and f2
based on the joint free-cumulant computation (3.13), and the fact

∑

π∈NC(N)

µ(π, 1N ) = 0

for all N ∈ N (e.g., see [4,6,7] and [13]). This freeness characterization (3.14) demon-
strates that the freeness on the normal Hecke subalgebra (determined by the linear
functional ϕp) is similar to classical independence.

In fact, under normality on the generating set Yp of HYp , the above freeness char-
acterization (3.14) is not so interesting. However, for the extended setting fully on
H(Gp) under a so-called normal-coring process of [4], we obtain the similar freeness
characterization in [4], by extending (3.14), which is really interesting.

Since we are restricting our interests inside the normal-Hecke-probabilistic frames,
we will not mention the full normal-cored free-probabilistic structures of the Hecke
algebra H(Gp), but we need to emphasize at this moment clearly that our future
results can be obtained similarly under the normal-coring process of [4] fully onH(Gp),
as in [4] and [6], too.



Certain group dynamical systems induced by Hecke algebras 345

4. REPRESENTATIONS OF NORMAL HECKE PROBABILITY SPACES

Let p be a fixed prime and let (HYp , ϕp) be the normal Hecke probability space in
the sense of Section 3. The representations of this section for (HYp , ϕp) is under-
stood as a restricted version of those of the Hecke algebra H(Gp) in the sense of [4]
and [6]. Thanks to the properties of our groups (which will be considered in the
following text), we (can) restrict our interests to the normal-Hecke-probability cases
here.

Define a sesqui-linear form on the normal Hecke subalgebra HYp ,

[·, ·]p : HYp ×HYp → C

by
[f1, f2]p

def= ϕp(f1 ∗ f∗2 ) for all f1, f2 ∈ HYp , (4.1)
where

f∗(x) def= f(x) in C for all x ∈ Gp,
where z means the conjugate of z for all z ∈ C.

We call the unary operation

f ∈ HYp 7−→ f∗ ∈ HYp (4.2)

in the sense of (4.1), the adjoint on HYp . And the element f∗ is said to be the adjoint
of f. Since the adjoint (4.2) is well-defined on the normal Hecke subalgebra HYp , the
algebra HYp is a ∗-algebra over C. Indeed, the adjoint (4.2) satisfies that:

(f∗)∗ = f for all f ∈ HYp , (4.3)

(f1 + f2)∗ = f∗1 + f∗2 for all f1, f2 ∈ HYp , (4.4)
(f1f2)∗ = f∗2 f

∗
1 for all f1, f2 ∈ HYp . (4.5)

So, by (4.3), (4.4) and (4.5), the normal Hecke subalgebra HYp is indeed a ∗-algebra
over C.

Consider that
[f, f ]p ≥ 0 for all f ∈ HYp (4.6)

and
[f1, f2]p = [f2, f1]p for all f1, f2 ∈ HYp . (4.7)

By the sesqui-linearity of [·, ·]p, the nonnegativity (4.6), and symmetry (4.7) under
conjugate of the form [·, ·]p, this form [·, ·]p becomes a pseudo-inner product on HYp .
And hence, the pair

(
HYp , [·, ·]p

)
forms a pseudo-inner-product space over C.

Remark that, by [4], there exists non-zero element f ∈ HYp such that

[f, f ]p = 0. (4.8)

So, the pseudo-inner product space (H(Gp), [·, ·]p) is not an inner product space by
the existence of non-zero element f of HYp satisfying (4.8).
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When we understand our normal Hecke subalgebra HYp as a pseudo-inner product
space (HYp , [·, ·]p)we denote it by Hp.

On the pseudo-inner product space Hp, define an equivalence relation Rp by

f1Rpf2
def⇐⇒ [f1, f1]p = [f2, f2]p. (4.9)

Definition 4.1. Let Hp be the pseudo-inner product space, and let Rp be the equiv-
alence relation (4.9) on Hp. Define the quotient space Hp by

Hp = Hp/Rp, (4.10)

equipped with the inherited pseudo-inner product, also denoted by [·, ·]p, on it. Then

Hp = (Hp, [·, ·]p) = (Hp/Rp, [·, ·]p)

is called the normal Hecke inner product space.
Indeed, our normal Hecke inner product space Hp is an inner product space by

Rp of (4.9), i.e., it not only satisfies the sesqui-linearity (under quotient), (4.6) and
(4.7), but also satisfies

[f, f ]p = 0⇐⇒ f = 0Hp = 0Hp/Rp, (4.11)

where 0Hp is the zero element of Hp.
By (4.11), we obtain the following proposition immediately.

Proposition 4.2. The normal Hecke inner product space Hp of (4.10) is indeed an
inner product space over C.

For the given inner product space Hp, one can naturally define the corresponding
norm ‖·‖p on Hp by

‖f‖p
def=
√

[f, f ]p for all f ∈ Hp, (4.12)

and the corresponding metric dp on Hp by

dp (f1, f2) = ‖f1 − f2‖p for all f1, f2 ∈ Hp. (4.13)

If there is no confusion, we write the equivalence classes

[f ]Rp = {h ∈ Hp : hRpf} ∈ Hp (4.14)

simply by f , i.e., we regard it as
n∑

j=1
tjχxjKj =

n∑

j=1
tj [χxjKj ]Rp

in Hp.

Definition 4.3. Construct the dp-metric topology closure of Hp in Hp, also denoted
by Hp. Then this Hilbert space Hp is called the normal Hecke Hilbert space.
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Then, by the very construction of the normal Hecke Hilbert space Hp from
the normal Hecke probability space (HYp , ϕp), the algebra HYp acts on Hp via an
algebra-action αp,

αp(f)(h) = f ∗ h for all h ∈ Hp, (4.15)
for all f ∈ HYp . In fact, by (4.14), one can express (4.15) precisely as follows:

αp(f)(h) = αp(f)
(
[h]Rp

)
= [f ∗ h]Rp = f ∗ h (4.16)

in Hp.
For convenience, we denote the image αp(f) by αpf for all f ∈ HYp .
The above morphism αp of (4.15) (or (4.16)) is indeed a well-defined algebra-action

of H(Gp) acting on Hp, since
αpf1∗f2

(h) = f1 ∗ f2 ∗ h = f1 ∗ (f2 ∗ h)

= f1 ∗
(
αpf2

(h)
)

= αpf1

(
αpf2

(h)
)

=
(
αpf1

αpf2

)
(h)

for all h ∈ Hp and f1, f2 ∈ H(Gp), i.e.,
αpf1∗f2

= αpf1
αpf2

on Hp (4.17)
for all f1, f2 ∈ H(Gp).

Also, the algebra-action αp satisfies that
[
αpf (h1), h2

]
p

= [f ∗ h1, h2]p = ϕp ((f ∗ h1) ∗ h∗2)

= ϕp (h1 ∗ f ∗ h∗2) = ϕp (h1 ∗ (h∗2 ∗ f)) = ϕp (h1 ∗ (f∗ ∗ h2)∗)

= [h1, f
∗ ∗ h2]p =

[
h1, α

p
f∗(h2)

]
p
,

since the convolution (∗) on HYp is commutative, for all h1, h2 ∈ Hp and f ∈ HYp ,
i.e., (

αpf

)∗
= αpf∗ on Hp for all f ∈ HYp . (4.18)

Since our normal Hecke algebra HYp is a ∗-algebra, the morphism αp of (4.15) is
a ∗-algebra-action of HYp acting on the normal Hecke Hilbert space Hp, by (4.17)
and (4.18).
Theorem 4.4. The pair (Hp, αp) of the normal Hecke Hilbert space Hp and the
morphism αp of (4.15) forms a well-determined Hilbert-space representation of the
normal Hecke subalgebra HYp acting on Hp, induced by the normal Hecke probability
space (HYp , ϕp).
Proof. By (4.17) and (4.18), indeed, the linear morphism αp of (4.15) is a
∗-algebra-action of HYp acting on Hp. Thus, the pair (Hp, αp) forms a Hilbert-space
representation of HYp .
Definition 4.5. The representation (Hp, αp) of the normal Hecke Hilbert space Hp
and the ∗-algebra-action αp of HYp acting on the normal Hecke Hilbert space Hp
is called the normal Hecke representation of the normal Hecke probability space
(HYp , ϕp).
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5. GROUPS TKN INDUCED BY CERTAIN PARTIAL ISOMETRIES ON Hp

In this section, we construct groups induced by certain operators acting on the normal
Hecke Hilbert space Hp. Such constructions are introduced in [6]. We “re-characterize”
and “generalize” the results of [6] to study our dynamical systems in the following
text.

Recall that an operator P on an arbitrary Hilbert spaceH is said to be a projection,
if it is both self-adjoint and idempotent, i.e.,

P ∗ = P = P 2 on H.

An operator T on H is called a partial isometry, if the operator T ∗T is a projection
on H. It is well-known that T is a partial isometry if and only if TT ∗T = T, if and
only if T ∗ is a partial isometry, if and only if TT ∗ is a projection, if and only if
T ∗TT ∗ = T ∗, on H. The projections T ∗T and TT ∗ induced by a partial isometry T
are said to be the initial projection of T, and the final projections of T, respectively.
The (closed) subspaces (T ∗T )H and (TT ∗)H of the given Hilbert space H are called
the initial subspace of T, and the final subspace of T in H, respectively.
Theorem 5.1. Let K C Gp be a normal compact-open subgroup with µp(K) = 1,
and let TK = αpχK be an operator on the normal Hecke Hilbert space Hp. Then it is
a projection on Hp, i.e.,

K CGp compact-open, µp(K) = 1⇒ αpχK is a projection on Hp. (5.1)

Proof. Suppose K is a compact-open normal subgroup of Gp, and TK = αpχK , the
operator induced by K on Hp. Then

(
TK
)∗ =

(
αpχK

)∗ = αpχ∗
K

= αpχK = TK

on Hp. Thus, the operator TK is self-adjoint on Hp.
Observe now that

(TK)2 =
(
αpχK

)2 = αpχK∗χK = αpµp(K∩K)χxKK = αpχµp(K)K
= αpχK = TK

on Hp. So, the operator TK is idempotent on Hp.
Therefore, TK is a projection on Hp.

By (5.1), we obtain the following theorem. In fact, the following theorem is proven
differently in [6]. However, here we provide a better and generalized proof.
Theorem 5.2. Let K be a normal compact-open subgroup with µp(K) = 1 and let
TK = αpχK be an operator on Hp. Suppose x1, . . . , xN are distinct nonzero elements
of Gp, satisfying x2

j = up, the group-identity of Gp, and let xjK be the cosets of K,
for j = 1, . . . , N, for N ∈ N. Then the operators TKj = αpχxjK

are partial isometries
on Hp, with both their initial and final projections TK , for all j = 1, . . . , N , i.e.,

TK is a projection on Hp as in (5.1), x2
j = up ∈ Gp ⇒ αpχxjK

are partial isometries on Hp for j = 1, . . . , N and N ∈ N.
(5.2)
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Proof. By assumption, the operator TK is a projection on Hp, by (5.1). Now, let
x1, . . . , xN be distinct elements of Gp, and let xjK be the cosets of K, where xj are
self-invertible in the sense that x2

j = up in Gp, and let TKj = αpχxjK
be corresponding

operators on Hp for j = 1, . . . , N, for N ∈ N.
Then we have

(
TKj
)∗ (

TKj
)

=
(
αpχxjK

)2
= αpµp(K)χx2

j
K

= αpχK = TK =
(
TKj
) (
TKj
)∗

on Hp, by the conditions that

µp(K) = 1 and x2
j = up in Gp

for all j = 1, . . . , N.
Since TK is a projection on Hp, the operator-product

(TKj )∗(TKj ) = (TKj )(TKj )∗

becomes a projection on Hp for all j = 1, . . . , N. Thus the self-adjoint operator TKj is
a partial isometry with its initial-and-final projection, identified with TK on Hp for
all j = 1, . . . , N.

As we have seen in (5.1) and (5.2), if we fix a normal compact-open subgroup K
of Gp with µp(K) = 1, one can have the projection TK = αpχK on Hp, moreover, if
there are xj ∈ Gp, with x2

j = up, equivalently, xj = x−1
j in Gp, then we obtain the

partial isometries TKj = αpχxjK
on Hp, whose initial-and-final projections are TK , for

j = 1, . . . , N and N ∈ N.

Remark 5.3. Note that there are enough self-invertible elements x of the group
Gp, such that x2 = up. Note that our constructions of TK and TKj are based on
the existence of self-invertible elements x in Gp. To confirm there are enough such
elements x in Gp, let us consider the following. Suppose that

A =
(

a b
1−a2

b −a

)
∈M2(Qp)

with
a 6= 0 and b 6= 0 in Qp.

Then A2 is identical to the identity matrix inM2(Qp). It shows that there are enough
elements x ∈ Gp such that x2 = up in Gp.

Construct now a subspace HKp by TK(Hp) in Hp. Then, on the subspace HKp ,

the projection TK is the identity operator, and each partial isometry TKj becomes a
unitary for j = 1, . . . , N and N ∈ N, i.e.,

TK = 1HKp , the identity operator on HKp ,
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and
TKj are unitaries on HKp for all j = 1, . . . , N.

Recall that an operator U on a Hilbert space H is unitary if

U∗U = 1H = UU∗,

equivalently, U is invertible on H, moreover, the inverse U−1 of U is identical to the
adjoint U∗ on H.

Thus whenever such operators TKj and TK are given for a fixed normal
compact-open subgroup K of Gp, one can construct the group

TKN
def=
〈
{TKj }Nj=1

〉
, generated by {TKj }Nj=1, (5.3)

equipped with its binary operation, the operator multiplication inherited from that
on the operator algebra B(Hp), consisting of all (bounded linear) operators on Hp.

And, one can get a C∗-subalgebra C∗K,N of the operator algebra B(HKp ) (inside
B(Hp)) generated by the group TKN of (5.3), i.e., one has

C∗K,N = C∗HKp
(
TKN
)

= C
[
TKN
]
in B(HKp ), (5.4)

where X here means the operator-norm-closure of sets X in B(HKp ).

Definition 5.4. We call the group TKN of (5.3), the K(-concentrated)-subgroup
(of B(HKp ) in B(Hp)). And the group C∗-algebra C∗K,N of (5.4) is said to be the
K(-concentrated)-subgroup C∗-algebra of a compact-open normal subgroup K of Gp.

Then we obtain the following characterizations for the K-subgroups TKN of (5.3)
for a fixed compact-open normal subgroup K of Gp as follows.

Theorem 5.5 ([6]). Let TKN be the K-group in B(HKp ), and let TN be the finitely
presented group,

TN =
〈
{wj}Nj=1, {wj = w−1

j }Nj=1
〉
, (5.5)

with its generator set {wj}Nj=1, consisting of noncommutative indeterminants
w1, . . . , wN , and its relator set {wj = w−1

j }Nj=1. Then the group TKN and the group
TN of (5.5) are group-homomorphic, i.e.,

TKN
Group= TN . (5.6)

Therefore, the K-subgroup C∗-algebra C∗K,N (as a C∗-subalgebra of B(HKp )) is
∗-isomorphic to the group C∗-algebra C∗N generated by TN , i.e.,

C∗K,N
def= C∗HKp

(
TKN
) ∗-iso= C∗l2(TN ) (TN ) def= C∗N , (5.7)

where l2(X) mean the l2-Hilbert spaces generated by sets X.
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6. DYNAMICAL SYSTEMS INDUCED BY TKN

Throughout this section, we fix N ∈ N, and a normal compact-open subgroup K of
Gp with

µp(K) = 1.
As we have seen above, if K is given as above, then TK = αpχK is a projection

on Hp and TKj = αpχxjK
are partial isometries on Hp, whenever

x2
j = up in Gp for j = 1, . . . , N,

for N ∈ N, with their initial-and-final projections TK . And hence, the group TKN in
the sense of (5.3) is well-determined on the subspace HKp of Hp.

6.1. ACTING TKN ON C∗-ALGEBRAS

Let TKN be the K-subgroup of B(HKp ) in B(Hp) for the fixed compact-open subgroup
K of Gp, in the sense of (5.3), i.e., it is generated by the partial isometries TKj = αpχxjK
having their initial-and-final projections TK = αpχK on Hp, where x2

j = up in Gp for all
j = 1, . . . , N. Since the partial isometries TKj on the normal Hecke Hilbert space Hp
are unitaries on the subspace HKp = TK(Hp) for j = 1, . . . , N, and since the projection
TK on Hp is the identity operator 1HKp of HKp , one can construct the multiplicative
subgroup TKN of B(HKp ) as in Section 5. Moreover, this group TKN is group-isomorphic
to the finitely presented group

TN =
〈
{wj}Nj=1, {wj = w−1

j }Nj=1
〉
,

of (5.5) satisfying (5.6) and (5.7).
Let H be an arbitrary Hilbert space, and B(H), the operator algebra consisting

of all operators on H. Construct now the (topological) tensor product Hilbert space

HK,Hp

def= H ⊗ HKp , (6.1)

where HKp = TK(Hp) is the subspace of the normal Hecke Hilbert space Hp in-
duced by the fixed normal compact-open subgroup K of Gp, where the K-subgroup
C∗-algebra C∗K,N is acting. Then the group generators TKj of TKN are understood again
as self-adjoint unitary operators

TK,Hj = 1H ⊗ TKj , (6.2)

in the tensor product Hilbert space HK,H of (6.1), for all j = 1, . . . , N, where 1H
means the identity operator on H.

Now, let A be a C∗-subalgebra of B(H), i.e., all elements a of A are opera-
tors acting on H (under the embedding action λH in the sense that λH(a) = a on
H). Also, let Aut(A) be the collection of all ∗-isomorphisms (or (∗-)automorphisms)
on A.
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Then the group-dynamical system (TKN , A, λ) is well-determined, where λ is in the
sense of (6.3) below extended on A under linearity, i.e., it is an action of TKN acting
on A satisfying

λ
(
TKj
)
(

n∑

i=1
tiai

)
=

n∑

i=1
tiλj(ai) (6.3)

for all
∑n
i=1 tiai ∈ A with ti ∈ C, ai ∈ A, for n ∈ N∪ {∞}, for all j = 1, . . . , n, where

λj = λ
(
TKj
)
are in the sense that

λj(ai) = TK,Hj ⊗
(
ai ⊗ 1HKp

)
= ai ⊗ TKj ,

where TK,Hj are in the sense of (6.2).

Definition 6.1. Let TKN be the K-subgroup of B(HKp ), for a compact-open normal
subgroup K of Gp, and let λ be a group-action (6.3) of TKN acting on a C∗-algebra
A (in B(H)). Then the group-dynamical system (TKN , A, λ) is called the K-subgroup
dynamical system of TKN (acting) on A (via λ).

For convenience, we denote λ(T ) simply by λT for all T ∈ TKN .

Let (TKN , A, λ) be a K-subgroup dynamical system. As in Section 2.2, one can
construct the corresponding crossed product C∗-algebra

AKN = A×λ TKN (6.4)

induced by the dynamical system (TKN , A, λ), satisfying the λ-relation, expressed by
(6.5) and (6.6), below:

(a1T1) (a2T2) = a1λT1(a2)T1T2, (6.5)
and

(aT )∗ = λT−1(a∗)T−1 (6.6)
for all aT, a1T1, a2T2 ∈ AKN with a, a1, a2 ∈ A and T, T1, T2 ∈ TKN , i.e., the C∗-algebra
AKN is the C∗-subalgebra of

B(HKp,H) = B(H ⊗ HKp ) = B(H)⊗C B(HKp ),

where HKp,H is the tensor product Hilbert space H ⊗ HKp in the sense of (6.1), and
where (⊗C) means the tensor product on algebras over C, generated by A and λ(TKN )
satisfying the above λ-relation, (6.5) and (6.6).
Definition 6.2. We call the crossed product C∗-algebra AKN = A ×λ TKN of (6.4)
induced by a K-subgroup dynamical system (TKN , A, λ), the K-subgroup dynamical
C∗-algebra over A (in B(HKp,H)).

For convenience, if there is no confusion, let us denote λT (a) simply by aT , for
all T ∈ TKN , and a ∈ A. With this new notation one can re-write (6.5) and (6.6) as
follows:

(a1T1)(a2T2) = a1a
T1
2 T1T2
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and
(aT )∗ = (a∗)T

−1
T−1 = (a∗)T

−1
T ∗,

respectively, where T−1 means the group-inverse of T in TKN and T ∗ means the adjoint
of T in AKN .

Since TKN and TN are group-isomorphic, one can establish an “equivalent”
group-dynamical system (TN , A, λ ◦Ω). From below, we denote a group-isomorphism
of TN and TKN by

Ω : TN → TKN ,

which is a generator-preserving isomorphism from TN onto TKN . Clearly, such an
isomorphism Ω exists by (5.6).

Also, this group-isomorphism Ω is nicely extended to a ∗-isomorphism Ωo from
the corresponding C∗-algebras C∗N onto C∗K,N , under linearity, by (5.7), i.e.,

Ω(wj) = TKj for j = 1, . . . , N (6.7)

(with possible re-arrangements), where

TKN =
〈
{TKj }Nj=1

〉
in B(HKp )

and
TN =

〈
{wj}Nj=1, {w−1

j = wj}Nj=1
〉
.

So, indeed, one can establish an equivalent dynamical system (TN , A, λ◦Ω), when-
ever we have the K-subgroup dynamical system (TKN , A, λ).
Theorem 6.3. Let TKN be the K-subgroup in B(HKp ) and let TN be the
finitely presented group Ω−1 (TKN

)
with group-isomorphism Ω of (6.7). Then the

K-subgroup-dynamical systems (TKN , A, λ) and (TN , A, λ ◦ Ω) are equivalent, i.e.,
(
TKN , A, λ

) equi= (TN , A, λ ◦ Ω) . (6.8)

Therefore, the crossed product C∗-algebras AKN = A×λ TKN and AN = A×λ◦Ω TN are
∗-isomorphic, i.e.,

AKN
∗-iso= AN . (6.9)

Proof. The proof of (6.8) is by the definition of equivalence on dynamical systems,
and by (6.7). By (6.8), the ∗-isomorphic relation (6.9) holds.

By the equivalence (6.8), one can understand two group-dynamical systems
(TKN , A, λ) and (TN , A, λ◦Ω), alternatively. Similarly, we understand two C∗-algebras
AKN and AN , alternatively, by (6.9). In the rest of this paper, we let

λo
denote= λ ◦ Ω.

Let AKN be the K-subgroup dynamical C∗-algebra (6.4) induced by a K-subgroup
dynamical system (TKN , A, λ), and let

ajT
K
j ∈ AKN for j = 1, . . . , N,
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for any aj ∈ A, where TKj = αpχxjK
are generating elements of the K-subgroup TKN

for j = 1, . . . , N. Then one has

(
aj1T

K
j1

) (
aj2T

K
j2

)
= aj1a

TKj1
j2
TKj1 T

K
j2 = aj1a

TKj1
j2
αpχxj1K

αpχxj2K

= aj1a
TKj1
j2
αpχµp(K)χxj1xj2KK

= aj1a
TKj1
j2
αpχxj1xj2K

.

(6.10)

So, in AN = A×λo TN , we have the equivalent formula of (6.10):

(aj1wj1) (aj1wj1) = aj1a
wj1
j2

wj1wj2 . (6.11)

By regarding our K-subgroup dynamical C∗-algebra AKN as its ∗-isomorphic
C∗-algebra AN , we obtain the following isomorphism theorem.

Theorem 6.4. Let AKN = A ×λ TKN be our K-subgroup dynamical C∗-algebra (6.4)
induced by the K-subgroup dynamical system (TKN , A, λ). Then this C∗-algebra AKN is
∗-isomorphic to the conditional tensor product C∗-algebra AKN ,

AKN
def= A⊗λ C∗K,N ,

where C∗K,N = C∗HKp
(
TKN
)
is the C∗-subalgebra in the sense of (5.7) in B(HKp ), where

the conditional tensor product ⊗λ satisfies the λ-relations:

(
a1 ⊗ TKj1

)
(a2 ⊗ TKj2 ) = a1a

TKj1
2 TKj1 T

K
j2

and (
a⊗ TKj

)∗ = (a∗)T
K
j ⊗ TKj

for all j, j1, j2 = 1, . . . , N, under linearity, i.e.,

AKN = A×λ TKN
∗-iso= A⊗λ C∗K,N

∗-iso= A⊗λo C∗N
∗-iso= AN . (6.12)

Proof. Let us understand the K-subgroup dynamical C∗-algebra AKN induced by
a K-subgroup dynamical system (TKN , A, λ) as its ∗-isomorphic crossed product
C∗-algebra AN induced by an equivalent group-dynamical system (TN , A, λo), where

TN =
〈
{wj}Nj=1, {w−1

j = wj}Nj=1
〉
. (6.13)

First construct a conditional tensor product C∗-algebra AN by a C∗-subalgebra
of the usual tensor product C∗-algebra A ⊗C C∗N , as the conditional tensor product
C∗-algebra,

AN = A⊗λo C∗N ,

where C∗N = C∗l2(TN )(TN ) ∗-iso= C∗K,N , satisfying the λo-relations (6.14) and (6.15)
below:

(a1 ⊗ wj1)(a2 ⊗ wj2) = a1a
wj1
2 ⊗ wj1wj2 , (6.14)
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where awj1
2 = λo,wj1

(a2) in A, for all a1, a2 ∈ A, and wj1 , wj2 are the generating
elements of TN of (6.13), under linearity, and

(a⊗ wj)∗ = (a∗)w
−1
j ⊗ w−1

j = (a∗)wj ⊗ wj , (6.15)

since w−1
j = wj , for all j = 1, . . . , N, under linearity, for all a ∈ A, and wj are the

generators of TN of (6.13), where (a∗)w = λo,w(a∗) in A.
Define now a morphism Φ : AN → AN by a linear transformation satisfying

Φ
(

n∑

i=1
ti(a⊗ wji)

)
=

n∑

i=1
ti (awji) (6.16)

for all
∑n
i=1 ti(a⊗ wji) ∈ AN , with ti ∈ C, a ∈ A,wji are the generating elements of

TN , for n ∈ N∪{∞}. Then, as a generator-preserving morphism, Φ is bijective. Also,
it satisfies that

Φ ((a1 ⊗ wj1)(a2 ⊗ wj2)) = Φ
(
a1a

wj1
2 ⊗ wj1wj2

)

by (6.14)
= a1a

wj1
2 wj1wj2 = (a1wj1) (a2wj2)

in AN
= Φ (a1 ⊗ wj1) Φ (a2 ⊗ wj2)

for all a1, a2 ∈ A and the generators wj1 , wj2 ∈ TN . Thus, this linear morphism Φ of
(6.16) is multiplicative, i.e.,

Φ (x1x2) = Φ(x1)Φ(x2) in AN for all x1, x2 ∈ AN . (6.17)

Furthermore, this multiplicative bijective linear transformation Φ satisfies that

Φ ((a⊗ wj)∗) = Φ ((a∗)wj ⊗ wj)

by (6.15)
= (a∗)wj wj = (awj)∗

in AN , by (6.6) under TN
Group= TKN . Thus, we have

Φ(x∗) = Φ(x)∗ in AN for all x ∈ AN . (6.18)

Therefore, by (6.17) and (6.18), the bijective linear transformation Φ of (6.16)
is both multiplicative and adjoint-preserving, equivalently, it is a ∗-isomorphism. So,
two C∗-algebras AN and AN are ∗-isomorphic, i.e.,

AN = A⊗λo C∗N
∗-iso= A×λo TN = AN . (6.19)

By (6.8), (6.9) and (6.19), we obtain that

AN
∗-iso= AN

∗-iso= A⊗λ TKN
∗-iso= AKN .

Therefore, the ∗-isomorphic relation (6.12) holds.
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The above characterization (6.12) shows that our K-subgroup dynamical
C∗-algebra AKN induced by aK-subgroup dynamical system (TKN , A, λ) is ∗-isomorphic
to the conditional tensor product C∗-algebra

AKN
denote= A⊗λ C∗K,N ,

having λ-relations (6.5) and (6.6).
Now, we understand these ∗-isomorphic C∗-algebras AN ,AKN ,AN and AKN , as the

same C∗-algebra. Case-by-case, we will use suitable settings.

6.2. FREE PROBABILITY ON AKN
In this section, we establish free probability on the K-subgroup dynamical C∗-algebra
AKN induced by the K-subgroup dynamical system (TKN , A, λ) As we discussed at
the end of Section 6.1, we use the C∗-algebras AKN ,AN ,AKN and AN as the same
C∗-algebra, here.

Recall that the C∗-algebra AKN is acting on the tensor product Hilbert space
HKp,H = H ⊗ HKp of (6.1), whenever A is a C∗-(sub)algebra in the operator algebra
B(H).

The inner product [·, ·] on HKp,H is naturally determined by

[h⊗ w, h′ ⊗ w′] = [h, h′]H [w,w′]p, (6.20)

where h, h′ ∈ H, and w,w′ ∈ HKp , where [·, ·]H means the inner product on H, and
[·, ·]p is the inner product (4.1) on HKp , inherited from that on Hp.

Now, let us fix an element h0 in the Hilbert space H. And take the identity element

hK
denote= 1HKp = TK = αpχK (6.21)

in the subspace HKp of the normal Hecke Hilbert space Hp. Fix now a Hilbert-space
element hKp,H ∈ HKp,H ,

hKp,H
def= h0 ⊗ hK ∈ HKp,H , (6.22)

where h0 is arbitrarily fixed in H, and hK is in the sense of (6.21) in HKp .

For the fixed Hilbert-space element hKp,H in HKp,H , define a morphism

ϕp,H : AKN → C

by a linear functional satisfying

ϕp:H (aw) =
[
(a⊗ w)(hKp,H), hKp,H

]
, (6.23)

for all aw = a⊗ w ∈ AKN , with a ∈ A and w ∈ C∗K,N (by understanding aw ∈ AKN as
a⊗ w ∈ AKN ), under linearity, where [·, ·] is in the sense of (6.20).
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Now, let T = aTKj ∈ AKN , where a ∈ A and TKj are the generators of the
K-subgroup TKN for j = 1, . . . , N. Then

ϕp:H
(
aTKj

)
=
[
(a⊗ TKj )(hKp,H), hKp,H

]
=
[
(a⊗ TKj )(h0 ⊗ hp), h0 ⊗ hp

]

= [a(h0), h0]H
[
TKj hp, hp

]
p

= [a(h0), h0]H
[
αpχxjK

, αpχK

]
p

= [a(h0), h0]H ϕp
(
χxjK ∗ χK

)

by (4.1)

= ϕp
(
χxjK

)
[a(h0), h0]H = µp(xjK ∩K)

µp(K) [a(h0), h0]H

= (µp (xjK ∩K)) [a(h0), h0]H
(6.24)

by (3.8), (3.9).
The formula (6.24) shows that if we define a linear functional ψ0 : A → C on A

by
ψ0(a) def= [a(h0), h0]H for all a ∈ A, (6.25)

then the linear functional ϕp,H of (6.23) on AKN can be understood by

ϕp:H = ψ0 ⊗ ϕp on AKN , (6.26)

by (6.24) and (6.25), in the sense that

ϕp:H(aw) = (ψ0 ⊗ ϕp) (a⊗ w) = (ψ0(a)) (ϕp(w))

for all aw ∈ AKN with a ∈ A,w ∈ TKN ⊂ C∗K,N , under linearity, where ψ0 is in the sense
of (6.25) and ϕp is in the sense of (4.1).

By definition (6.23), and by (6.24) and (6.26), we get

ϕp,H

(
n∑

i=1
ti aiwi

)
=

n∑

i=1
tiϕp,H (aiwi) =

n∑

i=1
tiψ0(ai)ϕp(wi)

for all ti ∈ C, ai ∈ A,wi ∈ TKN ⊂ C∗K,N , for i = 1, . . . , n, and n ∈ N ∪ {∞}.
Proposition 6.5. Let ϕp,H be the linear functional (6.23) on the given K-subgroup
dynamical C∗-algebra AKN , and let ψ0 and ϕp be the linear functionals in the sense of
(6.25) and (4.1), respectively. Then

ϕp,H = ψ0 ⊗ ϕp.
Proof. The proof is done by (6.26).

As we have discussed above, the linear functional ϕp,H is well-determined on AKN .
So, the pair

(
AKN , ϕp,H

)
forms a C∗-probability space in the sense of [13] and [15].

Definition 6.6. The C∗-probability space
(
AKN , ϕp,H

)
is called theK-(subgroup-)dy-

namical C∗-probability space induced by a K-subgroup dynamical system (TKN , A, λ).
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6.3. FREE-DISTRIBUTIONAL DATA ON (AKN , ϕp,H)

In this section, we fix a K-subgroup dynamical system (TKN , A, λ), and its correspond-
ing crossed product C∗-algebra AKN = A×λ TKN , understood also by its ∗-isomorphic
C∗-algebras AN ,AN ,AKN , where the C∗-algebra A is acting on a Hilbert space H in
B(H). Also, let

(
AKN , ϕp:H

)
be the K-dynamical C∗-probability space in the sense of

Section 6.2. Here, we are interested in free-distributional data of certain operators of
AKN in terms of ϕp,H , represented by free-moments or free-cumulats.

Recall and note that

ϕp:H = ψ0 ⊗ ϕp on AKN = AKN , (6.27)

as in (6.26).
We concentrate on studying free distributions of the operators formed by aTKj ∈

(AKN , ϕp,H) with a ∈ A and TKj = αpχxjK
, which are the generators of TKN ⊂ C∗K,N , for

j = 1, . . . , N.
For convenience, we use the terms awj for aTKj for j = 1, . . . , N, in this section.
Let aiwji be such free random variables aiTKji in the K-dynamical C∗-probability

space (AKN , ϕp,H) for i = 1, . . . , n, where a1, . . . , an ∈ A and wji = TKji are generators
of TKN ⊂ C∗K,N for i = 1, . . . , n, for some n ∈ N. Then

n∏

i=1
aiwji = a1a

wj1
2 a

wj1wj2
3 . . . a

wj1wj2 ...wjn−1
n wj1wj2 . . . wji , (6.28)

where aw = λw(a) in A.
So, by (6.26) and (6.28), we obtain the following free-momental information.

Proposition 6.7. Let aiwji be free random variables of the given K-dynamical
C∗-probability space

(
AKN , ϕp,H

)
, with ai ∈ A, and wji = αpχxjK

are the generators
of TKN ⊂ C∗K,N , for i = 1, . . . , n, for n ∈ N. Then

ϕp,H

(
n∏

i=1
aiwji

)
=
(
µp

((
n∏

i=1
xji

)
K ∩K

))






n∏

i=1
a

i−1∏
k=1

wji

i


 (h0), h0



H

, (6.29)

with axiomatization a
∏0

k=1
wji

1 = a1 in A.



Certain group dynamical systems induced by Hecke algebras 359

Proof. Observe that

ϕp,H ((a1wj1)(a2wj2) . . . (anwjn))

= ϕp,H

(
a1a

wj1
2 a

wj1wj2
3 . . . a

wj1 ...wjn−1
n wj1wj2 . . . wjn

)

by (6.28)

= ψ0

(
a1a

wj1
2 . . . a

wj1 ...wjn−1
n

)
ϕp
(
TKj1 . . . T

K
jn

)

by (6.26)

= ψ0

(
a1a

wj1
2 . . . a

wj1 ...wjn−1
n

)
ϕp

(
αpχxj1 ...xjnK

)

=
(
ψ0

(
a1a

wj1
2 . . . a

wj1 ...wjn−1
n

))
(µp (xj1 . . . xjnK ∩K)) ,

for all (j1, . . . , jn) ∈ {1, . . . , N}n and (a1, . . . , an) ∈ An and n ∈ N.

The above formula (6.29) provides general joint free-momental free-distributional
data of aiwji for i = 1, . . . , n and n ∈ N.

By the Möbius inversion of Section 2.2, one can get the following equivalent
free-distributional data.
Proposition 6.8. Let aiwji be free random variables in the K-dynamical
C∗-probability space

(
AKN , ϕp,H

)
with ai ∈ A, and wji = αpχxjiK

are generators of
TKN ⊂ C∗K,N , for i = 1, . . . , n and n ∈ N. Then we have

kp,Hn (a1wj1 , . . . , anwjn) =
∑

π∈NC(n)

(∏

V ∈π
ϕp,H(V )

)
µ(π, 1n), (6.30)

where

ϕp,H(V ) = µp

(∏o

k∈V
xjikK ∩K

)[(∏o

k∈V
aik

)
(h0), h0

]

H

,

where
∏o means the product under order in the sense that if

V = (i1 < i2 < . . .< ik) in π ∈ NC(n),
then

∏o

k∈V
xjik = xji1xji2 . . . xjik in Gp,

and
∏o

k∈V
aik = ai1ai2 . . . aik in A,

where kp,Hn (. . .) means the free cumulant determined by the linear functional ϕp,H .
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Proof. The proof of (6.31) is done by the free-probabilistic Möbius inversion of [15]
and by (6.29).

Now, both by (6.29) and by (6.30), we obtain the following necessary freeness
condition.
Theorem 6.9. Let aiwji ∈

(
AKN , ϕp,H

)
be given by above propositions for i = 1, 2

with assumption j1 < j2. If a1 and a2 are free in (A,ψ0) and if

µp

((
n∏

i=1
xji

)
K ∩K

)
= 1 (6.31)

for all (j1, . . . , jn) ∈ {1, 2}n and n ∈ N, then a1wj1 and a2wj2 are free in
(
AKN , ϕp,H

)
.

Proof. Suppose the condition (6.31) holds. Then

kp,Hn
(
ai1wji1 , . . . , ainwjin

)

=
∑

π∈NC(n)

(
µp

(
o∏

k∈V
xjikK ∩K

)[(
o∏

k∈V
aik

)
(h0), h0

]

H

)
µ(π, 1n)

by [13]

=
∑

π∈NC(n)

([(
o∏

k∈V
aik

)
(h0), h0

]

H

)
µ(π, 1n)

by (6.31)

=
∑

π∈NC(n)

(∏

V ∈π
ψ0

(
o∏

k∈V
aik

))
µ(π, 1n)

=
∑

π∈NC(n)

ψ0:π (ai1 , . . . , ain)µ(π, 1n)

= kψ0
n (ai1 , . . . , ain)

where kψ0
n (. . .) means the free cumulant on (A,ψ0) determined by the linear func-

tional ψ0

= 0,
(6.32)

by the assumption that a1 and a2 are free in (A,ψ0).
It shows that the mixed free cumulants of a1wj1 and a2wj2 vanish under the

condition (6.32), and hence, they are free in
(
AKN , ϕp,H

)
.
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7. APPLICATIONS

In this section, we keep studying our K-dynamical C∗-probability space
(
AKN , ϕp,H

)
.

In particular, we will take some specific C∗-algebras A for a given K-subgroup dy-
namical C∗-algebra AKN = A ×λ TKN . As in Section 6, we understand ∗-isomorphic
C∗-algebras

AKN = A⊗λ C∗K,N , AN = A⊗λo C∗N ,
AN = A×λo TN ,

and AKN as the same C∗-algebra.

7.1. A IS A GROUP C∗-ALGEBRA IN (TKN , A, λ)

As a first case, let us consider a K-subgroup dynamical system (TKN , AG, λ) is given
where AG is a group C∗-algebra.

Let G be a discrete countable group. Then one can construct the corresponding
group-Hilbert space HG = l2(G) as a l2-space with its orthonormal basis

BG = {ξg : g ∈ G} ⊂ HG,

i.e., for the l2-inner product [·, ·]2 on HG, we have

[ξg1 , ξg2 ]2 = δg1,g2 for all g1, g2 ∈ G,

where δ means the Kronecker delta. Remark that, among orthonormal-basis elements
in HG, we have multiplication

ξg1ξg2 = ξg1g2 in HG

for all g1, g2 ∈ G.
Thus, one can construct the left-regular unitary representation λG as a

group-action of G acting on HG by

λG(g) = ug ∈ B(HG), a unitary on HG,

such that
ug(ξg′) = ξgξg′ = ξgg′ for all g′ ∈ G

and
u∗g = u−1

g on HG

for all g ∈ G.
Then the subset λG(G) of B(HG) generates the C∗-algebra

AG
def= C∗HG (λG(G)) = C [λG(G)] in B(HG), (7.1)

where X means the topological closure in B(HG) under operator-norm topology.
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Definition 7.1. We call the C∗-subalgebra AG of B(HG) generated by G = λG(G),
the group C∗-algebra of G.

All elements u of a group C∗-algebra AG of G are expressed by

u =
∑

g∈G
tgλG(g) =

∑

g∈G
tgug with tg ∈ C.

In fact, our K-subgroup C∗-subalgebra C∗K,N = C∗HKp
(
TKN
)
is in fact under a

similar setting in B(HKp ), since the generators TKj = αpχxjK
are unitaries on HKp for

j = 1, . . . , N.
Let us fix a discrete countable groupG, and its corresponding group C∗-algebra AG

acting on the group Hilbert space HG, and assume we have a K-subgroup dynamical
system (TKN , AG, λ) generating the K-subgroup dynamical C∗-algebra

AKN = AG ×λ TKN in B(HKp,HG),

where
HKp,HG = HG ⊗ HKp .

Remark that it is ∗-isomorphic to the conditional tensor product C∗-algebra

AKN = AG ⊗λ C∗K,N .

We consider the more detailed isomorphism theorem in this special case.

Theorem 7.2. Let AKN,G = AG ×λ TKN be the K-subgroup dynamical C∗-algebra
induced by the K-subgroup dynamical system (TKN , AG, λ), where AG is a group
C∗-algebra in the sense of (7.1). Then

AKN,G
∗-iso= C∗HK

p,HG

(
G×λ TKN

)
, (7.2)

where G×λ TKN is the semi-product group of G and TKN with its operation

(g1, w1)(g2, w2) = (g1g
w1
2 , w1w2)

for g1, g2 ∈ G and w1, w2 ∈ TKN , where g1g
w1
2 is under operation on G and w1w2 is

under operation on TKN . Here

gw1
2 = λ−1

G (λw1(ug2)) ,

where λG is the left-regular representation of G as in (7.1), and λ is the group-action
of TKN acting on HKp,HG in the sense of (6.3).

Proof. First, define the semi-product group

GKN = G×λ TKN of groups G and TKN (7.3)
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by the subgroup of the usual product group G× TKN satisfying the operation

(g1, w1)(g2, w2) = (g1g
w1
2 , w1w2) ,

where
gw1

2 = λ−1
G (λw1(ug2)) in G,

where λw1 ∈ Aut(AG) and ug2 = λG(g2) ∈ AG, for g2 ∈ G and w1 ∈ TKN . Then the
operation is closed and associative. And it acts on the Hilbert space

HKp,HG = HG ⊗ HKp

via a group-action λG⊗λ. So, one can have the representation (HKp,HG , λG⊗λ) of the
group GKN in (7.3). Consider now the group C∗-algebra

AKN,G
def= C∗HK

p,HG

(
GKN
)

(7.4)

as a C∗-subalgebra of B
(
HKp,HG

)
.

Define a linear transformation

Ψ : AKN,G = AG ⊗λ C∗K,N → AKN,G

by the morphism satisfying

Ψ (ug ⊗ wj) = (λG ⊗ λ) (g, wj) (7.5)

for all g ∈ G and the generators wj of TKN for j = 1, . . . , N. It is not difficult to
check this linear transformation Ψ is bijective, by the very construction (7.5). Then
it satisfies that

Ψ ((ug1 ⊗ wj1)(ug2 ⊗ wj2)) = Ψ
(
u
g1g

wj1
2
⊗ wj1wj2

)

= (λG ⊗ λ)
(
g1g

wj1
2 , wj1wj2

)

= ((λG ⊗ λ) (g1, wj1)) ((λG ⊗ λ)(g2, wj2))
= Ψ (ug1 ⊗ wj1) Ψ (ug2 ⊗ wj2)

for all g1, g2 ∈ G and generators wj1 and wj2 of TKN ⊂ C∗K,N . So, for any y1, y2 ∈ AKN,G,
we have

Ψ(y1y2) = Ψ(y1)Ψ(y2) in AKN,G,
i.e., this bijective linear transformation Ψ of (7.5) is multiplicative.

Observe also that
Ψ ((ug ⊗ wj)∗) = Ψ

(
ug−1 ⊗ wj

)

since u∗g = ug−1 = u−1
g on HG, under the left regular unitary representation

= (λG ⊗ λ)(g−1, wj) = (λG ⊗ λ)(g−1, w−1
j )
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since wj are self-invertible for all j = 1, . . . , N

= (λG ⊗ λ)
(
(g, wj)−1) = Ψ (ug ⊗ wj)∗

for all g ∈ G and generators wj of TKN ⊂ C∗K,N for all j = 1, . . . , N. Therefore, under
linearity of Ψ, it satisfies

Ψ(y∗) = Ψ(y)∗ in AKN,G for all y ∈ AKN,G.

So, the multiplicative bijective linear transformation Ψ of (7.5) is in fact a
∗-isomorphism from AKN,G onto AKN,G. It shows that two C∗-algebras AKN,G and AKN,G
are ∗-isomorphic. Since AKN,G and AKN,G are ∗-isomorphic by (6.12), we can conclude
that

AKN,G
∗-iso= AKN,G

∗-iso= AKN,G.

Therefore, our K-subgroup dynamical C∗-algebra AKN,G = AG×λ TKN is ∗-isomorphic
to the group C∗-algebra AKN,G = C∗

HK
p,HG

(
GKN
)
, where GKN is in the sense of (7.3).

The above characterization (7.2) shows that if ourK-subgroup C∗-algebra AKN,G =
AG×λTKN is induced by a group C∗-algebra AG, then it is understood as a new group
C∗-algebra AKN = C∗

HK
p,HG

(
GKN
)
generated by the semi-product group

GKN = G×λ TKN .

Now, let us concentrate on the K-dynamical C∗-probability space
(
AKN,G, ϕp,HG

)
,

where AKN,G = AG ×λ TKN , for a group G.
Define canonically the linear functional ψG on the group C∗-algebra AG by

ψG


∑

g∈G
tgug


 def= teG =




∑

g∈G
tgug


 (ξeG), ξeG




2

, (7.6)

where eG is the group-identity of G. Then this linear functional ψG is not only
a well-defined linear functional but also it is a trace in the sense that

ψG (y1y2) = ψG (y2y1) for all y1, y2 ∈ AG
(e.g., [12]), i.e., even though y1y2 6= y2y1 in AG, one has the same tracial (or
linear-functional) values for them under ψG in C.

Then, by (6.26), (6.27) and (7.6), we have a well-defined linear functional
ϕp,HG = ψG ⊗ ϕp on the K-subgroup dynamical C∗-algebra

AKN,G = AG ⊗λ C∗K,N = AKN,G,

as in Sections 6.2 and 6.3. And it forms our K-dynamical C∗-probability space(
AKN,G, ϕp,HG

)
.
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Proposition 7.3. Let ugiwji be free random variables in a K-dynamical
C∗-probability space

(
AKN,G, ϕp,HG

)
for gi ∈ G and generators wji = αpχxjK

of the
K-subgroup TKN for i = 1, . . . , n and n ∈ N. Then

ϕp,HG

(
n∏

i=1
ugiwji

)
= δ n∏

i=1

gi, eG

µp

(
n∏

i=1
xjiK ∩K

)
, (7.7)

where δ means the Kronecker delta.
Proof. Observe that

ϕp,HG ((ug1wj1)(ug2wj2) . . . (ugnwjn))
= ψG (ug1ug2 . . . ugn)ϕp (wj1wj2 . . . wjn)

by (6.27)

= ψG (ug1g2...gn) (µp ((xj1xj2 . . . xjn)K ∩K))

by (6.29)

=
{
µp ((xj1 . . . xjn)K ∩K) if g1g2 . . . gn = eG,

0 otherwise,

by (7.6), for all g1, . . . , gn ∈ G and generators wj1 = αpχxj1K
, . . . , wjn = αpχxjnK

of TKN
for all n ∈ N.

By (7.7), one has the following equivalent free-distributional data on(
AKN,G, ϕp,HG

)
via the Möbius inversion of Section 2.2.

Proposition 7.4. Let ugiwji be free random variables of
(
AKN,G, ϕp,HG

)
, where gi ∈

G−{eG}, and wji = αpχxjiK
are generators of TKN ⊂ C∗K,N , for i = 1, . . . , n, for n ∈ N.

Then

kp,HGn (ug1wj1 , . . . , ugnwjn)

=





∑
π∈NCUe (n)

( ∏
V ∈π

µp

((∏o

k∈V
xjk

)
K ∩K

))
µ(π, 1n) if n ∈ 2N,

0 otherwise,

(7.8)

where NCUe (n) is the subset of the noncrossing partition lattice NC(n) introduced in
(7.11) and (7.12) below.
Proof. Under the notations used in (6.31), we have that

kp,HGn (ug1wj1 , . . . , ugnwjn) =
∑

π∈NC(n)

(∏

V ∈π
ϕp,HG(V )

)
µ(π, 1n) (7.9)
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where

ϕp,HG(V ) = δ∏o

k∈V
gk, eG

· µp
(

o∏

k∈V
xjkK ∩K

)
,

by (6.31) and (7.7), for all V ∈ π, π ∈ NC(n) and n ∈ N.
Remark first that if n is odd in N, then each noncrossing partition π ∈ NC(n)

contains at least one odd block V in the sense that V has an odd cardinality, i.e., |V |
is odd. If V is odd, then

δ∏o

k∈V
gk, eG

= 0, (7.10)

since each gk are assumed to be a non-identity in G. Therefore, the correspond-
ing block-depending free moment ϕp,HG(V ) = 0, and hence, the corresponding
partition-depending free moment vanish, too;

ϕp,HG(π) =
∏

B∈π
ϕp,HG(B) = (ϕp,HG(V ))


 ∏

B 6=V ∈π
ϕp,HG(B)


 = 0,

by (7.10). Therefore, whenever n is odd in N, the free cumulant computation (7.9)
vanish, i.e.,

kp,HGn (ug1wj1 , . . . , ugnwjn) = 0, whenever n is odd. (7.11)
Assume now that n is even in N. Define now a subset NCe(n) of NC(n) by

NCe(n) = {π ∈ NC(n) : π has only even blocks},

i.e., if θ ∈ NCe(n) and if V ∈ θ is a block, then |V | is even, and vice versa.
Now, for the n-tuple of our given free random variables (under order)

U = (ug1wj1 , ug2wj2 , . . . , ugnwjn) ,

define a subset NCUe (n) of NCe(n) by

NCUe (n) =
{
θ ∈ NCe(n)

∣∣∣∣
for all V = (i1, . . . , in) ∈ θ,
gi1gi2 . . . gin = eG in G

}
. (7.12)

By the construction of the subset NCUe (n) of (7.12) for an arbitrarily fixed even
number n ∈ N, the formula (7.9) becomes

kp,HGn (ug1wj1 , . . . , ugnwjn) =
∑

π∈NCUe (n)

ϕp,HG(π)µ(π, 1n)

=
∑

π∈NCUe (n)

(∏

V ∈π
ϕp,HG(V )

)
µ(π, 1n)

=
∑

π∈NCUe (n)

(∏

V ∈π
µp

((
o∏

k∈V
xjk

)
K ∩K

))
µ(π, 1n).
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Recall that, by (6.32), if a1 and a2 are free in (A,ψ0) and if

µp(xjiK ∩K) = 1 = µp(xj1xj2K ∩K)

for xj1 , xj2 ∈ Gp, inducing the generator wji = αpχxjiK
of our K-subgroup TKN for

i = 1, 2, then two free random variables a1wj1 and a2wj2 are free in the K-dynamical
C∗-probability space

(
AKN , ϕp,H

)
in general, for given C∗-probability space (A,ψ0).

Proposition 7.5. Suppose a group G is the free group Fn with n-generators
{g1, . . . , gn}, for n ∈ N and assume further that wj = αpχxjK

are the generators
of our K-subgroup TKN , satisfying

µp

(
n∏

k=1
xjkK ∩K

)
= 1

for all (j1, . . . , jn) ∈ {1, . . . , N}n and n ∈ N. Then the K-subgroup C∗-algebra AKN,G
is ∗-isomorphic to

AKN,G
∗-iso= n∗C

i=1

(
C∗(Z)×λ TKN

) ∗-iso= n∗C
i=1

(
C∗(Z)⊗λ C∗K,N

)
, (7.13)

where (∗C) means the topological free product algebra, and where C∗(Z) is the group
C∗-algebra generated by the abelian infinite cyclic group Z of the integers.

Proof. By (6.32), the free random variables aiwj are free from each other in the
K-dynamical C∗-probability space

(
AKN,G, ϕp,HG

)
, where G is the free group Fn

with n-generators {g1, . . . , gn} for n ∈ N. Recall also that under the canonical trace
ψG, the group C∗-algebra AG generated by the free group G is ∗-isomorphic to

AG = AFn
∗-iso= AFn1

∗C AFn2

∗-iso= n∗C
i=1
C∗(Z), (7.14)

whenever n1 + n2 = n for n1, n2 ∈ N (e.g., [12] and [15]). Remark again that the
above ∗-isomorphic relation (7.14) is determined by the trace ψG on AG. So, one can
get that

AKN,G
∗-iso= AKN,G = AG ⊗λ C∗K,N
∗-iso=

(
n∗C
i=1

C∗(Z)
)
⊗λ C∗K,N

by (7.14)
∗-iso= n∗C

i=1

(
C∗(Z)⊗λ C∗K,N

)

by (6.32).
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7.2. A IS A CERTAIN QUOTIENT ALGEBRA OF Mn(C) IN (TKN , A, λ)

In this section, we fix n ∈ N \ {1}, and a K-subgroup dynamical system (TKN , An, λ)
induced by the K-subgroup

TKN =
〈
{wj = αpχxjK

}Nj=1

〉

generating the corresponding K-subgroup dynamical C∗-algebra

AKN,n = An ×λ TKN .

Here An is a certain quotient algebra of the matricial algebra Mn(C) for n ∈ N.
Throughout this section, we fix n ∈ N \ {1}.

Now, let trn be the usual trace on Mn(C),

trn ([tij ]n×n) =
n∑

k=1
tkk (7.15)

for all (n× n)-matrices [tij ]n×n ∈Mn(C) with tij ∈ C for all i, j = 1, . . . , n.
The algebra An is defined by the quotient algebra of Mn(C) by an equivalence

relation R,
An = Mn(C)/R, (7.16)

where
a1Ra2

def⇐⇒ spec(a1) = spec(a2)
for all a1, a2 ∈Mn(C), where spec(a) means the spectrum of a for all a ∈Mn(C).

Recall that the spectrum spec(a) of a matrix a is the collection of all eigenvalues
of a ∈ Mn(C). Recall also that, two matrices a1 and a2 are unitarily equivalent in
Mn(C) if and only if

spec(a1) = spec(a2)
as subsets of C. So, the above equivalence relation R of (7.16) again means that

a1Ra2 ⇐⇒ a1 and a2 are unitarily equivalent inMn(C).

Note that whenever a is given in Mn(C) with its spectrum

spec(a) = {t1, t2, . . . , tn}

(without considering multiplicities of eigenvalues), one can find so-called the spectral
form ao of a,

ao =




t1 ∗
t2

. . .
0 tn


 , (7.17)

in Mn(C) with
spec(ao) = {t1, t2, . . . , tn} = spec(a).
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Therefore, without loss of generality, one can understand the quotient algebra An
of (7.16) as the collection of all spectral forms (7.17) of matrices in Mn(C). So, one
can naturally define a linear functional ψn on An by

ψn (x) def= trn(x) for all x ∈ An. (7.18)

In fact, the element x of An is an equivalence class [xo]R of the spectral form xo of x
in the sense of (7.17) in An, by the above discussion. So, one can simply let

x = xo in An.

From now on, all elements x = [x]R of An are regarded as the spectral forms xo of x
in An. Thus, one can get that

ψn(x) = ψn ([x]R) = trn(xo) =
∑

t∈spec(xo)

mtt, (7.19)

by (7.17) and (7.18), where xo is the spectral forms of xo, for all x ∈ An, and mt

mean the multiplicities of t ∈ spec(xo).
Thus, indeed, one can get a well-determined C∗-probability space (An, ψn), and

hence we have the K-dynamical C∗-probability space
(
AKN,n, ϕp,Hn

)
,

induced by the K-subgroup dynamical system (TKN , An, λ). In particular,

ϕp,Hn = ψn ⊗ ϕp on AKN,n = An ⊗λ C∗K,N = AKN,n,

where ψn is in the sense of (7.18), satisfying (7.19).
Proposition 7.6. Let a1, . . . , an ∈ An, and wji = αpχxjK

, generators of TKN ⊂ C∗K,N ,

for n ∈ N, and let Ti = aiwji be free random variables of the K-dynamical
C∗-probability space

(
AKN,n, ϕp,Hn

)
. We naturally assume each aj = [aj ]R of An

as its spectral form for all j = 1, . . . , n. Let

spec(ai) = {ti1, . . . , tin} for all i = 1, . . . , n, (7.20)

without considering multiplicities of eigenvalues. Then

ϕp,Hn

(
n∏

i=1
Ti

)
= µp

((
n∏

i=1
xji

)
K ∩K

)(
n∑

i=1

(
n∏

k=1
tik

))
. (7.21)

Proof. By (6.29), the linear functional ϕp,Hn = ψn ⊗ ϕp satisfies

ϕp,Hn ((a1wj1) (a2wj2) . . . (anwjn))

= ψn

(
a1a

wj1
2 a

wj1wj2
3 . . . a

wj1 ...wjn−1
n

)
ϕp (wj1wj2 . . . wjn)

= ψn (a1a2 . . . an)µp (xj1xj2 . . . xjnK ∩K)



370 Ilwoo Cho

since each awj1wj2 ...wji−1
i is the isomorphic image of ai, which is unitarily equivalent

to ai, sharing the identical spectral forms, for all i = 2, . . . , n

= trn (a1a2 . . . an)µp (xj1xj2 . . . xjnK ∩K)

= trn







n∏
k=1

t1k ∗
n∏
k=1

t2k

. . .

0
n∏
k=1

tnk







· µp (xj1xj2 . . . xjnK ∩K)

by (7.20)

=
(

n∑

i=1

(
n∏

k=1
tik

))(
µp

((
n∏

i=1
xji

)
K ∩K

))
.

Now, let n1, n2 ∈ N \ {1}, and let An1 and An2 be the corresponding quotient
algebras in the sense of (7.16). Construct now a direct product algebra An1+n2 ,

An1,n2 = An1 ⊕An2 . (7.22)

Note that it is understood as the quotient algebra of the direct product algebra
Mn1(C)⊕Mn2(C) under an equivalence relation Rn1+n2 , where

(a1 ⊕ b1)Rn1+n2 (a2 ⊕ b2) def⇐⇒

spec(a1) = spec(a2) for a1, a2 ∈Mn1(C)
and

spec(b1) = spec(b2) for b1, b2 ∈Mn2(C).
It is not difficult to check that An1,n2 has an inherited trace ψn1,n2 from the trace

trn1+n2 on the matricial algebra Mn1+n2(C). In fact, one has

ψn1,n2 = ψn1 ⊕ ψn2 on An1,n2 (7.23)

in the sense that
ψn (a1 ⊕ a2) = ψn1(a1) + ψn2(a2)

for all a1 ⊕ a2 ∈Mn with ak ∈ Ank for k = 1, 2, under linearity.
As we discussed above, if a1 ⊕ a2 ∈ An1,n2 , then a1 and a2 are spectral forms in

An1 , respectively, in An2 . So,

ψn1,n2 (a1 ⊕ a2) = ψn1 (a1) + ψn2 (a2) =
( ∑

t∈spec(a1)

mtt

)
+
( ∑

s∈spec(a2)

mss

)
(7.24)
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for all a1 ⊕ a2 ∈ An1,n2 , by (7.19) and (7.23), where mt and ms are multiplicities of
t and s, respectively. However, recall that the direct sum a1 ⊕ a2 of two matrices a1
and a2 satisfies

spec (a1 ⊕ a2) = spec(a1) ∪ spec(a2) in C. (7.25)

So, the formula (7.24) satisfies

ψn1,n2 (a1 ⊕ a2) =
∑

t∈spec(a1)∪spec(a2)

mtt, (7.26)

where mt means the multiplicities of t “in a1 ⊕ a2”, by (7.25).
It is clear that two algebras An1 and An2 are free in the C∗-probability space

(An1,n2 , ψn1,n2). Moreover,

(An1,n2 , ψn1,n2) = (An1 , ψn1) ∗C (An2 , ψn2)
= (An1 , ψn1)⊕ (An2 , ψn2) = (An1 ⊕An2 , ψn1 ⊕ ψn2) .

(7.27)

Proposition 7.7. Let (An1,n2 , ψn1,n2) be a free probability space, where An1,n2 and
ψn1,n2 are in the sense of (7.22) and (7.26), respectively. Assume that the generators
wj = αpχxjK

of TKN ⊂ C∗K,N satisfy

µp

((
n∏

l=1
xjl

)
K ∩K

)
= 1 (7.28)

for all (j1, . . . , jn) ∈ {1, 2}n and n ∈ N. Then

MK
N,n

def= Mn ×λ TKN
∗-iso= AKN,n1 ∗C AKN,n2

∗-iso= AKN,n1 ⊕ AKN,n2 . (7.29)

Proof. Two C∗-subalgebras

A1 = An1 ⊗λ C∗K,N and A2 = An2 ⊗λ C∗K,N

are free in
(
MK
N,n, ϕp,Hn

)
, since condition (7.28) satisfies the general case (6.32), by

(7.27). So,

MK
N,n

∗-iso= A1 ∗C A2.

However, again by (7.27), we obtain

A1 ∗C A2 = A1 ⊕ A2.

The above structure theorem (7.29) can be proved by computing free cumulants
directly. Such free cumulants can be computed with help of (7.24), (7.25) and (7.26).
However, we provide the above alternative proof.
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