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Abstract. In this paper, we study dynamical systems induced by a certain group T em-
bedded in the Hecke algebra H(G)) induced by the generalized linear group G, = GL2(Q))
over the p-adic number fields Q, for a fixed prime p. We study fundamental properties of
such dynamical systems and the corresponding crossed product algebras in terms of free
probability on the Hecke algebra H(Gp).
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1. INTRODUCTION

We have considered how primes (or prime numbers) act on operator algebras. The
relations between primes and operator algebras have been studied in various different
approaches. For instance, in [2], we studied how primes act “on” certain von Neumann
algebras generated by p -adic and Adelic measure spaces. Also, the primes as operators
in certain von Neumann algebras, have been studied in [3].

Independently, in [5] and [6], we have studied primes as linear functionals acting
on arithmetic functions, i.e., each prime p induces a free-probabilistic structure (A, gp)
on the algebra A of all arithmetic functions. In such a case, one can understand arith-
metic functions as Krein-space operators (for fixed primes), via certain representations
(see [8]).

These studies are all motivated by well-known number-theoretic results (e.g., [1])
under free probability techniques (e.g., [12,13] and [15]).

In modern number theory and its applications, p-adic analysis provides important
tools for studying geometry at small distance (e.g., [14]). it is not only interested in
various mathematical fields but also in related scientific fields (e.g., [4,8]). The p-adic
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number fields Q, and the Adele ring Ag play key roles in modern number theory;
analytic number theory, L-function theory, and algebraic geometry (e.g., [2,10] and
[11]). Also, analysis on such Adelic structures gives a way of understanding vector
analysis under a non-Archimedean metric (e.g., [2,3,7], and [8]).

In [7], the author and Gillespie consider free-probabilistic models on the classical
Hecke algebra H(Gp), where G, is the generalized linear group GL2(Q,) over the
p-adic number field Q,, for primes p, and characterize the inner freeness of H(G,).
In [4], the author constructed suitable representations of Hecke algebras under our
free-probabilistic settings. Under these representations, each element of H(G,) is
regarded as an operator on a certain Hilbert space §),. The spectral properties;
self-adjointness, projection-property, normality, isometry-property, unitarity and hy-
ponormality; of such operators have been considered in [4]. As continuation, in [6],
we concentrated on studying partial isometries induced by generating elements of
the Hecke algebra #H(G,) under a representation introduced in [4]. In particular,
we realize that there are partial isometries having same initial and final projections
on §),, and hence, they generate groups acting on “subspaces” of §),, i.e., such partial
isometries can be understood as unitaries on the “subspaces.” Groups generated by
the partial isometries and corresponding C*-algebras have been considered in [6].

In this paper, we keep study dynamical systems induced by groups generated by
partial isometries in the sense of [4], and their crossed product algebras. In particular,
we study free probability, preserving number-theoretic data, on these crossed product
algebras.

2. PRELIMINARIES

In this section, we briefly introduce fundamental background concepts we will use in
the text.

2.1. HECKE ALGEBRAS AND FREE PROBABILITY

We refer readers [4] and [7] for more detailed information about motivations, defini-
tions and background of our series of study: free probability, representation theory
and operator algebra theory on Hecke algebras over p-adic number fields for primes
p. We will use the same definitions and notations used in [4] and [7]. Of course, in the
following text, we will introduce them precisely.

Also, readers can check fundamental analytic-and-combinatorial free probability
theory from [13] and [15] (and the cited papers therein). Free probability is understood
as the noncommutative operator-algebraic version of classical probability theory. The
classical independence is replaces by the freeness. It has various applications not only
in pure mathematics (e.g., [12]) but also in related topics in physics (e.g., [5,6, 9]
and [8]). In particular, we will use the combinatorial free probabilistic approach of
Speicher (e.g., [13]). Free moments and free cumulants of operators, or free random
variables, will be computed in the following text, as free-distributional data of the
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operators. The precise definitions and computational techniques can be found in [13]
and the papers cited therein.

2.2. DYNAMICAL SYSTEMS INDUCED BY ALGEBRAIC STRUCTURES

In this section, we briefly discuss dynamical systems induced by algebraic structures
equipped with single binary operations; for instance, semigroups, or monoids, or
groups, or groupoids, etc.

Let T' = (T, ) be an arbitrary algebraic structure equipped with its single binary
operation (-). We will handle I" arbitrarily in this section, but one may assume now I’
is a group. And let A be an algebra over C. One may / can regard A as a topological
algebra. Assume further that there exists an action X\ of I' acting on A, i.e., the images
A(w), denoted by A, of all w € T are well-defined functions on A, satisfying

Awiws = Awy © Ay, forall wi,wy €T, (2.1)

where (o) means the usual functional composition.

Under the setting that A is an algebra over C, one may restrict his / her ideas to
the cases where )\, are linear transformations on A. Also, if A has its topology, then
one may assume \,,’s are continuous for the topology of A for all w € T'.

Definition 2.1. The triple (I', A, \) is called the dynamical system of I acting on A
via \.

Whenever we have fixed such a dynamical system (T, A, \), if A induces a linear
transformations on A, then one can construct the crossed product algebra,

AF:AX)\F (22)

induced by the dynamical system (T, A, \), as an algebra generated by both A and
A(T) satistying A-relation (2.3) below:

for any aywsi, asws € Ap, with ay,as € A and wy,wy €T,

(arwn) (azwz) = (@1 h (a2)) w1, (23)

for a1 Ai(a2) € A and wywy €T
If T' is a group (with group-inverses), or a groupoid (with groupoidal inverses),
and if A is a x-algebra with its adjoint:

*

a*=ain A forall ac€A,

and
(a1 +az)* =ajay and (a1a2)* = aja]

in A for all a1,as € A, then we need an additional condition (2.4) for the A-relation:

for any aw € Ar witha € Aand w e T

1

(aw)* = Ay-1(a®)w ™, 24)

where a* is the adjoint of @ in A and w™"' is the inverse of w in I
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Definition 2.2. Let (T, A, \) be a dynamical system induced by an algebraic struc-
ture I" equipped with a single binary operation, and let Ar = A x I" be an algebra in
the sense of (2.2), satisfying the A-relation (2.3). Then it is called the crossed product
algebra induced by (I', A, \). If T has its invertibility and if A is a x-algebra over C,
then the A-relation implies both (2.3) and (2.4).

3. FREE-PROBABILISTIC MODELS ON H(G,)

In this section, we review free-probabilistic structures obtained in [4]. Moreover, some
of the main results of [4] and [7] are introduced for our later results.

3.1. HECKE ALGEBRAS #(G,)

For a fixed prime p, assume we have the corresponding generalized linear group
Gp = GL2(Q,) over the p-adic number field Q,, and the Hecke algebra H(G)) is
defined by the algebra,

N eN, and t; € C, and
K is a compact subgroup of G,
depending on f,
where z; € Gy, forall j=1,...,N

N
H(G,) =C, f= th Xz; K , (3.1)
j=1

where C,[X] mean algebras generated by X under the usual functional addition, and
convolution (%) in the sense that

f1x f2(g) = / f1(@) fa (™ g)dpy(g) (3.2)
&y

for all fi, fo € H(G,) and g € G,, and where xy mean characteristic functions of
tp-measurable subsets Y of G, where p, is the both left-and-right invariant Haar
measure on G, (e.g., see [4,6] and [7]). The subset

N eN, and t; € C, and
al K is a compact subgroup of G
_ _ , P>
Xp=93/= thj Xaj K depending on f,
= where z; € Gy, forall j=1,...,N

(3.3)

of the Hecke algebra H(G)) is said to be the generating set of H(Gp), and we call
elements of X, generating elements of H(Gp), i.e.,

H(Gp) = (C*[Xp}-
Thus, one may re-write

N N eN, and t; € C, and
H(G,) = th Xz,k,; | K are compact subgroups of G, , (3.4)
j=1 where z; € G, forall j=1,...,N

set-theoretically.
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Take now elements Xz, ., Xz,k, i1 H(Gp) for x; € G), and compact-open sub-
groups K; of G, for j = 1,2. Then they satisfy that

mwmemw=/mequﬂm%m

Xar K1 (%) Xarg Kag—1 (27 ) dpap ()

S &

= | Xa1K: (x)Xnggp;l(m)dﬂp(x)

p

[}

since £7' € 29 Kpg~ ' if and only if x € gKoxy *

~ [ Norsargrary @ (o)
GP

= lp (lel N gKgxgl)
by (3.2), for all g € G, i.e.,

(Xar K1 * Xaokz) (9) = pp (21 K1 N gKomy ") (3.5)

for all g € G
Without loss of generality, one may understand

Xok (9) = Mp(;j((x?{g)ff) _ L p(ff(;)g 94 (3.6)

Recall that a subgroup K is normal in an arbitrary group I' if gK = Kg for all
g € I'. As usual, we denote this normal subgroup-inclusion by K <1T'. Define a subset
Y, of the generating set X, of H(G)) by

N

Y, © 8N tixayx € X, IK QG ¢ (3.7)
j=1
One may have a subalgebra
de
Hy, & C.[Y,] of H(G,). (3.8)

Theorem 3.1 (see [4] and [7]). Let Xo,Kk;, €x;k; € Hy,, where z; € G and K; QG
compact-open, for j =1,2. Then

Xz1 K1 * Xao Ko = NP(Kl n KQ)XE112K1K27 (39)

where K1 Ko < Gy, is the product group of K1 and Ka.
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Definition 3.2. Let Y, be the subset (3.7) of the generating set X,, and let
Hy, = C.[Y,] be the subbet (3.8) of the Hecke algebra H(G,), for a fixed prime p.
Then we call Y}, and Hy,,, the normal sub-generating set of X,,, and the normal Hecke
subalgebra of H(Gp), respectively.

3.2. ON THE NORMAL HECKE SUBALGEBRA Hy, OF H(G))

In this section, we concentrate on studying the normal Hecke subalgebra Hy, of the
Hecke algebra 7(G),), in the sense of (3.8), where Y}, means the normal sub-generating
set (3.7) of the generating Set X, of H(G,), for a fixed prime p.

For convenience, denote ij and >< K simply by
j=1
x1,...~v and K; N, respectively,
for all N € N. Also, we will let
Ky ~n=Ki . (v-1)NKn
for all N € N\ {1}. We will use the same notations throughout this paper.
We obtain the following general computations.

Proposition 3.3 ([7]). Let xo,K;, ¢z, k; be generating elements of the normal Hecke
subalgebra Hy,, for j € N. Then

* Xac,K = (H:up )X:lh ..... ~NKi,... N (310)

for all N € N.

Denote the convolution fx ...*f of n-copies of f simply by f(™ for all n € N and
f e H(Gy).

3.3. FREE-PROBABILISTIC MODELS ON Hy,

Let H(G,) be the Hecke algebra (3.1) generated by the generalized linear group
Gp = GL3(Qp) over the p-adic number field Q, for a fixed prime p. From Section 3.1
we start to understand this algebra H(G),) as an algebra C,[X,,] generated by X, of
(3.3), consisting of C-valued functions f formed by

N
f:thX:ij for tjE(C,.Z’jEGp,

Jj=1

where K is a compact-open subgroup of G, for N &€ N. So, to consider
free-distributional data, it suffices to concentrate on generating elements x,x’s for
z € G)p, and compact-open subgroups K of G,,.
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In this section, we further restrict our interests to such elements in the normal

Hecke subalgebra Hy, (3.8) of H(G)).

Let u, be the group-identity of G,, i.e.,

(10
Y= 10 1

ep (f)

def

= f

) €6 =GLa(Q)).

For the fixed u,, define now a linear functional ¢, on Hy, by

(up)

for

fGHyp.

(3.11)

Clearly, the morphism ¢, is a well-defined point-evaluation linear functional on
Hy,, and hence, the pair (Hy,, pp) forms a free probability space in the sense of [13]

and [15].

Definition 3.4. We call the free probability space (Hy,, ), the normal Hecke prob-

ability space (for the prime p).

Then we obtain the following fundamental free-moment computations.

Proposition 3.5. Let x4, k;, €z, x,; be generating free random variables in the normal
Hecke probability space (Hy,,¢p) for all j € N. Then

N
<H2 Mp(Ki’,...,j)> (pp(z1,.. . NE1, N NupKy, L N))
<

N
Pp jilxijj =

for all N € N.
Proof. Indeed, one can get that

:U’P(Kl;m

N)

N
N o
@p(jil Xf_jKj> = (p;l?((H:U‘P(Kl,...,j))le,...,NK1 ..... N)
=2

.....

by (3.10)
N
= (T sz ) (
j=2
by (3.11)
N
— (ILmixz..0) (
j=2
by (3.6)

oy, NE1 N NupKy )

pp (K, N)

)

N 0
(Hj:Q Mp(Kl,...,j)) (p(@1,.. . NE1, N NupKi N))

(K1, N)

(3.12)
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Let Xa Ky5 -+ Xen Ky € (Hy,,pp) for N € N. Then the joint free cumulants can
be obtained by

k:;j\/' (XI1K17"'7XINKN) = Z (HQO;D (j:VXIinij) M(O\V\V ]‘|V|)>

TeNC(N) \Ver

by the free-probabilistic Mobius inversion of [13]

= . T wW)uw, 1v) . (3.13)

TeENC(N) V=(i1,...,i‘v‘)E7T
by (3.12), where

u (V) _ :LLP<K1'01,1'2) - 'Mp(Kzol,...,iW‘)Np(xi1,~~~7i\v|Ki17-~,i|w n Kilw-,i\w)
b /’Lp(Kilgu-’i\V\) '

are the block-depending free moments for all V' € w and all 7 € NC(N), where k(.. .)
means free cumulant in terms of ¢, as in [13].

By the above computation (3.13), we obtain the following freeness condition on
the normal Hecke subalgebra Hy,. And this freeness condition shows that the classical
independence guarantees our freeness.

Theorem 3.6 ([7]). Let f; = xk, be free random variables in the normal Hecke free
probability space (Hy,,¢p) for j =1,2. Then

frand fy are free in (Hy,, pp) <= pp(K7 5) = pip (K1) p1p(K2). (3.14)

The proof of (3.14) is done, by computing “mixed” free cumulants of f; and fo
based on the joint free-cumulant computation (3.13), and the fact

Z ,LL(’/T, 1N):0

TENC(N)

for all N € N (e.g., see [4,6,7] and [13]). This freeness characterization (3.14) demon-
strates that the freeness on the normal Hecke subalgebra (determined by the linear
functional ¢,) is similar to classical independence.

In fact, under normality on the generating set Y}, of Hy,, the above freeness char-
acterization (3.14) is not so interesting. However, for the extended setting fully on
H(G)p) under a so-called normal-coring process of [4], we obtain the similar freeness
characterization in [4], by extending (3.14), which is really interesting.

Since we are restricting our interests inside the normal-Hecke-probabilistic frames,
we will not mention the full normal-cored free-probabilistic structures of the Hecke
algebra H(G)), but we need to emphasize at this moment clearly that our future
results can be obtained similarly under the normal-coring process of [4] fully on H(G),),
as in [4] and [6], too.
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4. REPRESENTATIONS OF NORMAL HECKE PROBABILITY SPACES

Let p be a fixed prime and let (Hy,, ;) be the normal Hecke probability space in
the sense of Section 3. The representations of this section for (Hy,,,) is under-
stood as a restricted version of those of the Hecke algebra H(G,) in the sense of [4]
and [6]. Thanks to the properties of our groups (which will be considered in the
following text), we (can) restrict our interests to the normal-Hecke-probability cases
here.

Define a sesqui-linear form on the normal Hecke subalgebra Hy. ,

[', ']p : Hyp X Hyp — C

by
Ui, folp 2 op(fu % £3) forall fo, fo € Hy,, (4.1)

where
F@)?Fa)inC forall zeG,,
where Z means the conjugate of z for all z € C.
We call the unary operation

fe HYP — f* € ’HYP (4.2)

in the sense of (4.1), the adjoint on Hy,. And the element f* is said to be the adjoint
of f. Since the adjoint (4.2) is well-defined on the normal Hecke subalgebra Hy,, the
algebra Hy, is a *-algebra over C. Indeed, the adjoint (4.2) satisfies that:

(fF)=f foral feHy,, (4.3)
(fi+ )" =fi+f; forall fi,fo€Hy,, (4.4)
(fufo)" = fofT forall fi,f2 €My, (4.5)

So, by (4.3), (4.4) and (4.5), the normal Hecke subalgebra Hy, is indeed a *-algebra
over C.
Consider that
[f, flp >0 forall feHy, (4.6)

and

[flan]p = [f2, fl]p forall fy,fo € Hyp. (4.7)

By the sesqui-linearity of [-, -], the nonnegativity (4.6), and symmetry (4.7) under
conjugate of the form [-,-],, this form [-,-], becomes a pseudo-inner product on Hy, .

And hence, the pair (’Hyp, [, -]p) forms a pseudo-inner-product space over C.
Remark that, by [4], there exists non-zero element f € Hy, such that
[f, flp = 0. (4.8)
So, the pseudo-inner product space (H(Gp),[,-]p) is not an inner product space by

the existence of non-zero element f of Hy, satisfying (4.8).
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When we understand our normal Hecke subalgebra Hy, as a pseudo-inner product
space (Hy,, [, -]p)we denote it by H,.
On the pseudo-inner product space H,,, define an equivalence relation R, by

AR f2 Z5 111, Bl = Ufos Folp (4.9)

Definition 4.1. Let H, be the pseudo-inner product space, and let R, be the equiv-
alence relation (4.9) on H,. Define the quotient space £, by

Sf.’)p - Hp/Rp, (410)
equipped with the inherited pseudo-inner product, also denoted by [-,-],, on it. Then
p =, []p) = (Hp/Rp: [, ]p)

is called the normal Hecke inner product space.

Indeed, our normal Hecke inner product space §), is an inner product space by
R, of (4.9), i.e., it not only satisfies the sesqui-linearity (under quotient), (4.6) and
(4.7), but also satisfies

[f, flp =0 <= f =05, = 09,/ Ry, (4.11)

where 0y, is the zero element of H,,.
By (4.11), we obtain the following proposition immediately.

Proposition 4.2. The normal Hecke inner product space $), of (4.10) is indeed an
inner product space over C.

For the given inner product space $),,, one can naturally define the corresponding
norm |[-[|,, on £, by

def
Ifll, = /[f, flp forall fefy, (4.12)
and the corresponding metric d, on §, by
dp (f1, f2) = fr = foll, forall fi,f2 € $Hyp. (4.13)

If there is no confusion, we write the equivalence classes
[f]Rp ={h € Hp thf} €9y (4.14)

simply by f, i.e., we regard it as

n n
> tiXe,x, = 3 tilxa kIR,
j=1 j=1

in $y.

Definition 4.3. Construct the d,-metric topology closure of ), in H,, also denoted
by $,. Then this Hilbert space $),, is called the normal Hecke Hilbert space.
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Then, by the very construction of the normal Hecke Hilbert space §), from
the normal Hecke probability space (Hy,, ), the algebra Hy, acts on §), via an
algebra-action a?,

aP(f)(h) = f+h forall he sy, (4.15)
for all f € Hy,. In fact, by (4.14), one can express (4.15) precisely as follows:
o?(f)(h) = o (f) ([hlw,) = [f * B, = f+h (4.16)

in 9.

For convenience, we denote the image o (f) by o/; for all f € Hy,.

The above morphism o of (4.15) (or (4.16)) is indeed a well-defined algebra-action
of H(G,) acting on $),,, since

ol (h) = fix faxh= fix(f2xh)

= fix (o) = o, (7, (0) = (ef0f,) )
for all h € $, and fi, fa € H(G)), i.e.,
ol s, = ak ol on $, (4.17)
for all f1, fo € %(Gp)

Also, the algebra-action of satisfies that
(@ (hn), ha| = [f 5o, hal, = o ((f 5 ha) * b3)
P
= pp (b1 = [ * ha) = @p (R * (hy * f)) = @p (hy % (f* + ha)")
= [ha, f* * halp = [hla Oé?*(hz)} ;
P

since the convolution (*) on Hy, is commutative, for all hy,he € $, and f € Hy,,
i.e.,

(a?) = o/;* on$), forall feHy,. (4.18)

Since our normal Hecke algebra Hy, is a *-algebra, the morphism o of (4.15) is
a *-algebra-action of Hy, acting on the normal Hecke Hilbert space $,, by (4.17)
and (4.18).

Theorem 4.4. The pair (9p,a?) of the normal Hecke Hilbert space $, and the
morphism oP of (4.15) forms a well-determined Hilbert-space representation of the
normal Hecke subalgebra Hy, acting on $,, induced by the normal Hecke probability
space (Hy,,, ©p)-

Proof. By (4.17) and (4.18), indeed, the linear morphism o? of (4.15) is a
*-algebra-action of Hy, acting on $),. Thus, the pair (£),,a”) forms a Hilbert-space
representation of Hy, . O

Definition 4.5. The representation (£),, o) of the normal Hecke Hilbert space $),
and the *-algebra-action ao” of Hy, acting on the normal Hecke Hilbert space £,
is called the normal Hecke representation of the normal Hecke probability space

(HYP7 5010)'
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5. GROUPS T INDUCED BY CERTAIN PARTIAL ISOMETRIES ON §,,

In this section, we construct groups induced by certain operators acting on the normal
Hecke Hilbert space $),,. Such constructions are introduced in [6]. We “re-characterize”
and “generalize” the results of [6] to study our dynamical systems in the following
text.

Recall that an operator P on an arbitrary Hilbert space H is said to be a projection,
if it is both self-adjoint and idempotent, i.e.,

P*=P=P?onH.

An operator T on H is called a partial isometry, if the operator T*T is a projection
on H. It is well-known that T is a partial isometry if and only if TT*T = T, if and
only if T™ is a partial isometry, if and only if TT™ is a projection, if and only if
T*TT* =T*, on H. The projections T*T and TT* induced by a partial isometry 7'
are said to be the initial projection of T, and the final projections of T, respectively.
The (closed) subspaces (T*T)H and (TT*)H of the given Hilbert space H are called
the initial subspace of T, and the final subspace of T in H, respectively.

Theorem 5.1. Let K < G, be a normal compact-open subgroup with pu,(K) = 1,
and let TK = ok . be an operator on the normal Hecke Hilbert space $)p. Then it is
a projection on 5’3,,, ie.,

K <Gy, compact-open, p,(K) =1 = o is a projection on $,. (5.1)

Proof. Suppose K is a compact-open normal subgroup of G, and TK = ab ., the
operator induced by K on $),. Then
K\* * K
(T ) :(af(K) —Ot 1% _af(K =T

on $,. Thus, the operator TX is self-adjoint on Hp-

Observe now that

K\2 2 _ _ P _ — —_ 7K
(T ) (ap ) O‘ix*xx - all,p(KmK)X:cKK - aiup(K)K - O‘ix =T

on ),. So, the operator TX is idempotent on Np-

Therefore, T¥ is a projection on Np.- O

By (5.1), we obtain the following theorem. In fact, the following theorem is proven
differently in [6]. However, here we provide a better and generalized proof.

Theorem 5.2. Let K be a normal compact-open subgroup with p,(K) =1 and let
T = ol o be an opemtor on Hyp. Suppose x1,...,xN are distinct nonzero elements
of Gp, satzsfymg x = uy,, the group-identity of Gp, and let ;K be the cosets of K,

forj=1,...,N, for N € N. Then the operators TK = ail are partial isometries

on §)p, with both their initial and final projections TK, for all j=1,...,N, i.e.,

T* is a projection on §, as in (5.1), 23 = u, € G, = oz’;l x

(5.2)
are partial isometries on )y, forj=1,...,N and N € N.
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Proof. By assumption, the operator TX is a projection on §,, by (5.1). Now, let
Z1,...,2N be distinct elements of G, and let ;K be the cosets of K, where z; are
self-invertible in the sense that 25 = u, in Gy, and let TjK = O‘imj . be corresponding
operators on §), for j =1,..., N, for N € N. '

Then we have

* 2 *
(TF)(TF) = (02,,) = 0l rnay = O = T = (TF) (TF)
J
on £y, by the conditions that

up(K)=1 and x?zup in Gp

forall j=1,...,N.
Since TX is a projection on $p, the operator-product

(T (1)) = () (1)

becomes a projection on $,, for all j = 1,..., N. Thus the self-adjoint operator TjK is
a partial isometry with its initial-and-final projection, identified with 75 on $,, for
allj=1,...,N. O

As we have seen in (5.1) and (5.2), if we fix a normal compact-open subgroup K
of G, with p,(K) = 1, one can have the projection T = af - on $),, moreover, if
there are z; € Gy, with x? = up, equivalently, z; = xj_l in G,, then we obtain the
partial isometries T]-K =af . on $,, whose initial-and-final projections are TX, for

j=1,...,Nand N € N.

G K

Remark 5.3. Note that there are enough self-invertible elements x of the group
Gy, such that % = up. Note that our constructions of TK and TjK are based on
the existence of self-invertible elements  in G,. To confirm there are enough such
elements = in Gy, let us consider the following. Suppose that

a b
A= < 1—a? —a > € MQ(QP)
with
a#0 and b#0 in Q.

Then A? is identical to the identity matrix in M>(Q,). It shows that there are enough
elements x € G, such that 2% = u, in G,.

Construct now a subspace ﬁff by TK () in $H,. Then, on the subspace Sﬁff ,
the projection T¥ is the identity operator, and each partial isometry TjK becomes a
unitary for j=1,...,N and N € N, i.e.,

TK _ 155, the identity operator on .65,
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and
TjK are unitaries on ﬁf forall j=1,...,N.

Recall that an operator U on a Hilbert space H is unitary if
U'U=1yg =U0U",

equivalently, U is invertible on H, moreover, the inverse U ™! of U is identical to the
adjoint U* on H.

Thus whenever such operators TJK and TX are given for a fixed normal
compact-open subgroup K of G, one can construct the group

Tk = = <{TK} 1), generated by {TK}j 15 (5.3)

equipped with its binary operation, the operator multiplication inherited from that
on the operator algebra B(£),), consisting of all (bounded linear) operators on $,,.
And, one can get a C*-subalgebra & y of the operator algebra B(ﬁff ) (inside

B($),)) generated by the group TX of (5.3), i.e., one has

Ckn = Core (Tn) = C[TX] in B(%;), (5.4)

where X here means the operator-norm-closure of sets X in B($).

Definition 5.4. We call the group TX of (5.3), the K(-concentrated)-subgroup
(of B(HK) in B($,)). And the group C*-algebra ey of (5.4) is said to be the
K (-concentrated)-subgroup C*-algebra of a compact-open normal subgroup K of G,.

Then we obtain the following characterizations for the K-subgroups TX of (5.3)
for a fixed compact-open normal subgroup K of G, as follows.

Theorem 5.5 ([6]). Let TX be the K-group in B(HL), and let Ty be the finitely
presented group,

N -1\ N
Ty = ({witior {wy =w; }o), (5.5)
with its generator set {w; }j 1, consisting of moncommutative indeterminants
wi,...,wn, and its relator set {w; = w; -1 N . Then the group TX and the group
Tn of (5.5) are group-homomorphic, i.e.,
G
Tk T2 gy (5.6)

Therefore, the K-subgroup C*-algebra &y n (as a C*-subalgebra of B($), Ky s
x-isomorphic to the group C*-algebra €3 genemted by T, i.e.,

def de f

Cin = Chre (TN) =" Cirigyy (Tw) = €, (5.7)

where 12(X) mean the 1?-Hilbert spaces generated by sets X.
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6. DYNAMICAL SYSTEMS INDUCED BY %%

Throughout this section, we fix N € N, and a normal compact-open subgroup K of
Gy, with
pp(K) = 1.

As we have seen above, if K is given as above, then TX = af is a projection

X
on £, and TjK = 0‘};1 o are partial isometries on §),, whenever
°J

:c? =uy,inG, for j=1,...,N,
for N € N, with their initial-and-final projections T%. And hence, the group TX in

the sense of (5.3) is well-determined on the subspace f’){f of Hy.

6.1. ACTING TK ON C*-ALGEBRAS

Let TX be the K-subgroup of B(HK) in B($),) for the fixed compact-open subgroup

K of G,, in the sense of (5.3), i.e., it is generated by the partial isometries TjK =af .
0

having their initial-and-final projections 7% = ol on ), where x? = u, in Gy, for all
j=1,...,N. Since the partial isometries TjK on the normal Hecke Hilbert space £,
are unitaries on the subspace .6{)( =TK ($p) for j =1,..., N, and since the projection
TX on $), is the identity operator 1 HK of ﬁ{f , one can construct the multiplicative
subgroup ‘I% of B (ﬁff ) as in Section 5. Moreover, this group ‘Iﬁ is group-isomorphic
to the finitely presented group

Ty = {w; i, {w; =w; '},

of (5.5) satisfying (5.6) and (5.7).
Let H be an arbitrary Hilbert space, and B(H ), the operator algebra consisting
of all operators on H. Construct now the (topological) tensor product Hilbert space

de
S g gk (6.1)

where 5’)1{( = TK($,) is the subspace of the normal Hecke Hilbert space ), in-
duced by the fixed normal compact-open subgroup K of G),, where the K-subgroup
C~-algebra €7 y is acting. Then the group generators TjK of TX are understood again
as self-adjoint unitary operators

T =1y 0 TF, (6.2)
in the tensor product Hilbert space $x m of (6.1), for all j = 1,..., N, where 1y
means the identity operator on H.

Now, let A be a C*-subalgebra of B(H), i.e., all elements a of A are opera-
tors acting on H (under the embedding action Ay in the sense that Ag(a) = a on
H). Also, let Aut(A) be the collection of all *-isomorphisms (or (*-)automorphisms)
on A.
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Then the group-dynamical system (TX, A, \) is well-determined, where ) is in the
sense of (6.3) below extended on A under linearity, i.e., it is an action of TX acting

on A satisfying
n n
A (TyK) (Z tiai) = ZtMg‘(ai) (6.3)
i=1 i=1
forall >0 tia; € Awitht; € C, a; € A, for n € NU{oo}, for all j = 1,...,n, where
Aj=2A (TJK) are in the sense that

/\j(ai) = TjK,H ® (ai [24) 15-]{7() =aq; ®TjK’

where T]-K’H are in the sense of (6.2).

Definition 6.1. Let ‘I% be the K-subgroup of B(ﬁ{f ), for a compact-open normal
subgroup K of G, and let A be a group-action (6.3) of T acting on a C*-algebra
A (in B(H)). Then the group-dynamical system (TX, A, \) is called the K-subgroup
dynamical system of T (acting) on A (via \).

For convenience, we denote A(T) simply by Ar for all T € TX.

Let (TX,A,\) be a K-subgroup dynamical system. As in Section 2.2, one can
construct the corresponding crossed product C*-algebra

AR = A x, T (6.4)

induced by the dynamical system (TX, 4, \), satisfying the A-relation, expressed by
(6.5) and (6.6), below:

(alTl) (QQTQ) = al)\Tl ((7,2)]-‘11-727 (65)
and
(aT)" = Ap-1(a®)T™* (6.6)
for all aT, a1 Ty, axTy € AK with a, a1,a2 € Aand T, T1,Ts € T, i.e., the C*-algebra
AK is the C*-subalgebra of

B(%, ) = B(H ® 9,') = B(H) ®c B(%)),

where S’JffH is the tensor product Hilbert space H ® 5’9{,{ in the sense of (6.1), and
where (®¢) means the tensor product on algebras over C, generated by A and A(TE)
satisfying the above A-relation, (6.5) and (6.6).

Definition 6.2. We call the crossed product C*-algebra A¥ = A x, TX of (6.4)
induced by a K-subgroup dynamical system (TX, A, \), the K-subgroup dynamical
C*-algebra over A (in B(HK ).

For convenience, if there is no confusion, let us denote Ar(a) simply by a, for
all T € T, and a € A. With this new notation one can re-write (6.5) and (6.6) as
follows:

(alTl)(CLQTQ) = alangng
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and

(CLT)* — (a*)TflT—l — (a*)TilT*,
respectively, where T~! means the group-inverse of T in Tﬁ and T means the adjoint
of T in A]If,.

Since TX and Ty are group-isomorphic, one can establish an “equivalent”
group-dynamical system (Tn, A, Ao ). From below, we denote a group-isomorphism
of Ty and TX by

Q: Ty — 3K,
which is a generator-preserving isomorphism from Ty onto TX. Clearly, such an
isomorphism € exists by (5.6).

Also, this group-isomorphism €2 is nicely extended to a *-isomorphism €2, from

the corresponding C*-algebras & onto € y, under linearity, by (5.7), i.e.,

Quw;) =T for j=1,...,N (6.7)
(with possible re-arrangements), where
TN = {75 i B(y)
and
v = Quw i, {w; ' =w, 1)

So, indeed, one can establish an equivalent dynamical system (T n, A, Ao2), when-
ever we have the K-subgroup dynamical system (T, 4, \).

Theorem 6.3. Let TX be the K-subgroup in B(S”j{f) and let Ty be the
finitely presented group 7! (TIA{,) with group-isomorphism Q of (6.7). Then the
K -subgroup-dynamical systems (TX, A, \) and (T, A, X o Q) are equivalent, i.e.,

equt

(TN A, X)) = (Tn, 4, A0 Q). (6.8)

Therefore, the crossed product C*-algebras A% = A x ‘I% and Ay = A X o0 TN are
x-isomorphic, i.e., .

AK "= Ay, (6.9)
Proof. The proof of (6.8) is by the definition of equivalence on dynamical systems,
and by (6.7). By (6.8), the *-isomorphic relation (6.9) holds. O

By the equivalence (6.8), one can understand two group-dynamical systems
(T, A N) and (T, A, X o), alternatively. Similarly, we understand two C*-algebras
AL and Ay, alternatively, by (6.9). In the rest of this paper, we let

Ao 5 o 0,

Let AX be the K-subgroup dynamical C*-algebra (6.4) induced by a K-subgroup
dynamical system (TX, A, ), and let

a; T € Ay for j=1,...,N,
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for any a; € A, where T jK =« are generating elements of the K-subgroup T

for 7 =1,..., N. Then one has

Xz K

TK TK
- K Ky amKmpK _ J1 D p
(aﬂlle) (G’J?TJé) = G, a4, le Tj2 = 5,4y, aX:cleanjZK
(6.10)
_ . J1 P — . J1 P
= 45,4y, OéXup(K)ijlijKK = G, a4, ax.zjlmjzx‘
So, in Ay = A x,, TN, we have the equivalent formula of (6.10):
_ Wiy
(ajywj,) (aj,w;,) = ajya;, wiwj,. (6.11)

By regarding our K-subgroup dynamical C*-algebra A% as its x-isomorphic
C*-algebra Ay, we obtain the following isomorphism theorem.

Theorem 6.4. Let AY = A x, T be our K-subgroup dynamical C*-algebra (6.4)

induced by the K-subgroup dynamical system (T, A, \). Then this C*-algebra A is
x-isomorphic to the conditional tensor product C*-algebra 21%,

def %
AN E Ay Cxp,

where € = Cf (TX) is the C*-subalgebra in the sense of (5.7) in B(H), where

the conditional tensor product ®» satisfies the \-relations:
TK TKY — TffTKTK
(a1 ®Tj) (a2 @ Tjy ) = anay ™ T3 T,

and . .
(a & TJK) = (a*)Tj X TJK

forall j, j1,jo =1,..., N, under linearity, i.e.,

-150 *-150 -150

AR =Ax TR =A@ G vy =0 AR, €y =0 Ay, (6.12)

Proof. Let us understand the K-subgroup dynamical C*-algebra AX induced by
a K-subgroup dynamical system (TXK,A,\) as its #-isomorphic crossed product
C*-algebra Ay induced by an equivalent group-dynamical system (Tn, A, A,), where

v = ({w}o, {w;t =w;},). (6.13)

First construct a conditional tensor product C*-algebra 20y by a C*-subalgebra
of the usual tensor product C*-algebra A ®c €}, as the conditional tensor product
C*-algebra,

Q[N =A ®)\,, Qt?\fa

*-180

where &y = Cpr (Twv) = € y, satisfying the A,-relations (6.14) and (6.15)
below: .
(a1 ® wj, ) (a2 ® wy,) = a1a,” @ wj,wy,, (6.14)
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where a;Ujl = Ao,uy, (az) in A, for all aj,as € A, and wj,,w;, are the generating
elements of T of (6.13), under linearity, and

-1

(a@w))* = (a)" @w; " = (a")" ®w;, (6.15)

1

since w; - = wy, for all j = 1,..., N, under linearity, for all a € A, and w; are the

generators of Ty of (6.13), where (a*)" = A, (a*) in A.
Define now a morphism ® : 2y — Ay by a linear transformation satisfying

(0] (Z t; (a &® w]1)> = Z ti (awji) (616)
i=1 i=1

for all 7" | ti(a @ w;,) € An, with t; € C,a € A, wj, are the generating elements of
TN, for n € NU{oo}. Then, as a generator-preserving morphism, ® is bijective. Also,
it satisfies that
o ((al ® wjl)(a'2 & wjz)) = (ala;]jl ® wjle2)
by (6.14)
ws
= a1ay” wj, wj, = (a1wy,) (azwy,)

in AN
= ¢ (a1 @ wy,) P (a2 ® wy,)

for all a1,as € A and the generators w;,, w;, € Ty. Thus, this linear morphism ® of
(6.16) is multiplicative, i.e.,

(0] (l‘laig) = (I’(xl)é(xz) in Ay forall xr1,To € An. (617)
Furthermore, this multiplicative bijective linear transformation ® satisfies that

® ((a@w;)*) = @ ((a")" @ wy)

by (6.15)
= (a")" w; = (aw;)”
in Ay, by (6.6) under Ty Grow TK. Thus, we have
O(2*) =®(z)" in Ay forall xeAy. (6.18)

Therefore, by (6.17) and (6.18), the bijective linear transformation ® of (6.16)
is both multiplicative and adjoint-preserving, equivalently, it is a *-isomorphism. So,
two C*-algebras 21y and Ay are x-isomorphic, i.e.,

Q[NZA®>\O Q:}CV *_i:SOAX)\O Ty =Apn. (619)
By (6.8), (6.9) and (6.19), we obtain that
AN *—;so m]\/' *-éso A ®)\ T% *—éso Aﬁ

Therefore, the *-isomorphic relation (6.12) holds. O
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The above characterization (6.12) shows that our K-subgroup dynamical
C*-algebra AIA{, induced by a K-subgroup dynamical system (‘IIA{“ A, X) is #-isomorphic
to the conditional tensor product C*-algebra

K denote %
Q[N = A®)\ €K,N7

having A-relations (6.5) and (6.6).
Now, we understand these *-isomorphic C*-algebras 2x, A%, Ax and AK, as the
same C*-algebra. Case-by-case, we will use suitable settings.

6.2. FREE PROBABILITY ON A%

In this section, we establish free probability on the K-subgroup dynamical C*-algebra
Aﬁ induced by the K-subgroup dynamical system (‘II]\(,,A, A) As we discussed at
the end of Section 6.1, we use the C*-algebras AKX, Ay, AL and Ay as the same
C*-algebra, here.

Recall that the C*-algebra AK is acting on the tensor product Hilbert space
55;;{,11 = H ® 9l of (6.1), whenever A is a C*-(sub)algebra in the operator algebra
B(H).

The inner product [-, -] on ﬁff 5 is naturally determined by
h@w W @w]=[hh]gww], (6.20)
where h,h’ € H, and w,w’ € HX where [-,-]z means the inner product on H, and

P )
[-,-]p is the inner product (4.1) on 5’35, inherited from that on $),.
Now, let us fix an element hg in the Hilbert space H. And take the identity element

hic = g = TF = of, (6.21)

in the subspace ﬁ{f of the normal Hecke Hilbert space §,. Fix now a Hilbert-space
element hf,H € ﬁ;fH,
de
WS hy @ hic € 954, (6.22)

where hg is arbitrarily fixed in H, and hg is in the sense of (6.21) in $/F.
For the fixed Hilbert-space element hf)f pin .611){, 7, define a morphism

Op.H AR > C
by a linear functional satisfying
pprr (aw) = [(a @ w)(hyy), hyg] (6.23)

for all aw = a @ w € AY, with a € A and w € i n (by understanding aw € AR as
a®w € ALY), under linearity, where |-, -] is in the sense of (6.20).
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Now, let T = aT jK € AK, where a € A and TjK are the generators of the
K-subgroup TX for j =1,...,N. Then

ot (aT3) = [(@@ T ) (), hyin] = [(a @ Tf)(ho @ hy), ho @ hy]
= [a(ho), holy [Tthpv hpL, = [a(ho), holy [aizjku aiKL
= [a(ho), holy ¢» (Xa, K * XK )

by (4.1)

= ¢y (Xay ) [alho), holyy = W

= (pp (z; K N K)) [a(ho), holy

[a(ho), holg

(6.24)

by (3.8), (3.9).
The formula (6.24) shows that if we define a linear functional 19 : A — C on A
by
def

’lﬂ()((l) = [a(ho), ho}H forall ae€ A7 (625)
then the linear functional ¢, g of (6.23) on AY can be understood by
Ppitt = o ® pp on A, (6.26)

by (6.24) and (6.25), in the sense that
pp:(aw) = (Yo @ ¢p) (a @ w) = (Yo(a)) (pp(w))

for all aw € Af@ witha € A,w € S]I\(, C €% n, under linearity, where 1) is in the sense
of (6.25) and ¢, is in the sense of (4.1).
By definition (6.23), and by (6.24) and (6.26), we get

Pp,H (Z L aiwi> = th'@p,H (aiw;) = Zti¢0(ai)¢p(wi)
i=1 i=1 i=1

forallt; € C,a; € A,w; € TX C iy fori=1,...,n, and n € NU {oo}.
Proposition 6.5. Let ¢, g be the linear functional (6.23) on the given K-subgroup
dynamical C*-algebra AKX, and let 1o and ¢, be the linear functionals in the sense of
(6.25) and (4.1), respectively. Then

p,H = Y0 ® Pp.
Proof. The proof is done by (6.26). O

As we have discussed above, the linear functional ¢, g is well-determined on A%.
So, the pair (A%, ¢, i) forms a C*-probability space in the sense of [13] and [15].

Definition 6.6. The C*-probability space (AJI\(,7 gop’H) is called the K-(subgroup-)dy-
namical C*-probability space induced by a K-subgroup dynamical system (‘Iﬁ, A N).
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6.3. FREE-DISTRIBUTIONAL DATA ON (AKX, ¢, )

In this section, we fix a K-subgroup dynamical system (‘Iﬁ7 A, \), and its correspond-
ing crossed product C*-algebra AK = A x, TK understood also by its *-isomorphic
C*-algebras Ay, 2y, AL, where the C*-algebra A is acting on a Hilbert space H in
B(H). Also, let (AX, ¢p.m) be the K-dynamical C*-probability space in the sense of
Section 6.2. Here, we are interested in free-distributional data of certain operators of
AK in terms of ¢, g, represented by free-moments or free-cumulats.

Recall and note that

Pp:it = o @ pp on AR = AR, (6.27)

as in (6.26).
We concentrate on studying free distributions of the operators formed by aTjK €
(AR, op.) with a € Aand T/ = o® , which are the generators of T C € y, for

Xa;
j=1,...,N.
For convenience, we use the terms aw; for aTjK for 5 =1,..., N, in this section.
Let a;w;, be such free random variables aiTJ{_{ in the K-dynamical C*-probability
space (AX, p, ) fori=1,... ,n, where ay,...,a, € A and w;, = Tj{,{ are generators
of TK T n for i =1,...,n, for some n € N. Then
n
Wy, Wi, Wy Wiy Wiy - Wy,
Haiwji =araytaz’ 7 ant T T  wj wy, . wj, (6.28)

i=1

where a¥ = Ay (a) in A.
So, by (6.26) and (6.28), we obtain the following free-momental information.

Proposition 6.7. Let a;w;, be free random wvariables of the given K-dynamical
C* -probability space (Aﬁ, <pp,H), with a; € A, and wj, = « are the generators

ofT]I\(, CCk N, fori=1,....n, forn € N. Then

- - n ij'i
Pp,H (Haz’wjz> = (NP <<H$J1> KﬁK)) Ha?zl (h()), h() N (629)

i=1 i=1

chjK

0 .
Hk:] Wi;

with aziomatization a; =a; in A.
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Proof. Observe that

op,u ((a1wj,)(a2wy,) . . . (anwy,))

— Wiy Wi Wiy Wiy Wip_q ) )
= Pp,H (a1a2 Qg N 7 Wi, Wiy - .- Wy,

by (6.28)
— ’1/}0 (ala;]jl . a:jlmwjn_l) @p (Tfl{ . Tf:)
by (6.26)
= '()[}0 (ala;)“ e a:jjlmwjnil) QOp (aifﬂjl ”JnK>
= (wo (ala;)“ --.a:jl”'wj"’l)) (bp (5, -2, KN K)),
for all (j1,...,7n) € {1,...,N}" and (ay,...,a,) € A™ and n € N. O

The above formula (6.29) provides general joint free-momental free-distributional
data of a;w;, fori=1,...,n and n € N.

By the Mobius inversion of Section 2.2, one can get the following equivalent
free-distributional data.

Proposition 6.8. Let a;w;, be free random wvariables in the K-dynamical

C*-probability space (A%, ¢p7H) with a; € A, and wj, = ag’c%K are generators of

Tk c Ci ny fori=1,...,n and n € N. Then we have

ke (awyy, o agwy,) =Y (Hsap,H(m) p(m, 1), (6.30)

TeENC(n) \Vem

where

ep,a(V) = ip (HoxjikKﬂK> KHO%> (h0)7ho} :
keV keV H
where [[° means the product under order in the sense that if
V=_(>1<i2<...<i) inm € NC(n),

then

HO = . . . n G
x]ik - x]il ‘r]iz T x]ik tmn Gp,
keV
and
o .
H Qg = A4y Ay« - - Ay, 1T A,
keV

where kB (...) means the free cumulant determined by the linear functional @, g .
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Proof. The proof of (6.31) is done by the free-probabilistic Mébius inversion of [15]
and by (6.29). O

Now, both by (6.29) and by (6.30), we obtain the following necessary freeness
condition.

Theorem 6.9. Let a;w;, € (AIA{,, gopyH) be given by above propositions for i = 1,2
with assumption j1 < jo. If a1 and as are free in (A,vg) and if

1y ((ﬁxj> KN K) =1 (6.31)

forall (j1,...,7n) € {1,2}" and n € N, then a1w;, and asw;, are free in (A%, gopﬂ) )
Proof. Suppose the condition (6.31) holds. Then

D H (0 Yy
kb (a“wﬁ1 yee- ,aznwjin)

= Z (MP (Hl‘jikKﬁK> [(Halk> (hO)th] > /,6(7'(', 1n)
TeNC(n) keV keV i

by [13]

-z () w] oo
TeNC(n) keV g

by (6.31)

> (Hwo (ﬁ%))u(mln)

TeNC(n) \Verm keVvV
= Z Yo:r (aila ) ain) ,U'(’/Ta ln)
TeNC(n)

= k:’fo (ail,...,ain)

where k¥0(...) means the free cumulant on (4,1)) determined by the linear func-
tional ¢0

=0,
(6.32)

by the assumption that a; and ag are free in (4, vy).
It shows that the mixed free cumulants of a;w;, and asw;, vanish under the
condition (6.32), and hence, they are free in (AN, ¢p i) . O
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7. APPLICATIONS

In this section, we keep studying our K-dynamical C*-probability space (AIA{,, ©p, H) .
In particular, we will take some specific C*-algebras A for a given K-subgroup dy-
namical C*-algebra AK = A x, TK. As in Section 6, we understand *-isomorphic
C*-algebras

AL =A®x Q:;(,Nv Ay = AR, N,
ANZAX)\O SN,

and A¥ as the same C*-algebra.

7.1. AIS A GROUP C*-ALGEBRA IN (TX A, ))

As a first case, let us consider a K-subgroup dynamical system (TX, Ag, \) is given
where Ag is a group C*-algebra.

Let G be a discrete countable group. Then one can construct the corresponding
group-Hilbert space Hg = 12(G) as a [?-space with its orthonormal basis

BG:{ngQEG}CHg,
i.e., for the (?-inner product [-,-]o on Hg, we have

[591,592]2 =0g,,9, forall g1,90 €G,

where § means the Kronecker delta. Remark that, among orthonormal-basis elements
in Hg, we have multiplication

91892 = Egrgo In He

for all g1, 92 € G.
Thus, one can construct the left-reqular wunitary representation Ag as a
group-action of G acting on Hg by

Ac(g) =uy € B(Hg), a unitary on Hg,

such that
ug(&g) =&l = &gy forall ¢’ € G
and
uy = ug_1 on Hg
for all g € G.

Then the subset Ag(G) of B(Hg) generates the C*-algebra
def ox AT
Ac ™ €3, (0a(G)) = TPa(@)] in B(Ha), (7.1)

where X means the topological closure in B(Hg) under operator-norm topology.
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Definition 7.1. We call the C*-subalgebra Ag of B(Hg) generated by G = A\g(G),
the group C*-algebra of G.

All elements u of a group C*-algebra Ag of G are expressed by

u=> tohglg) =Y tyu, with t,€C.
S 9€G

In fact, our K-subgroup C*-subalgebra €} y = Cgx (TX) is in fact under a
) P

similar setting in B (ﬁff ), since the generators TjK = of . are unitaries on ﬁff for
j=1,...,N. ’

Let us fix a discrete countable group G, and its corresponding group C*-algebra Ag
acting on the group Hilbert space H¢g, and assume we have a K-subgroup dynamical
system (TX, Ag, \) generating the K-subgroup dynamical C*-algebra

AN = A xx TN in B(H g,.),

where
pne = Ho © 9,
Remark that it is s-isomorphic to the conditional tensor product C*-algebra
ALK — Ag ®a Q:;(,N~
We consider the more detailed isomorphism theorem in this special case.

Theorem 7.2. Let AJI\%G = Ag x) TK be the K-subgroup dynamical C*-algebra
induced by the K-subgroup dynamical system (TX,Aq, ), where Ag is a group
C*-algebra in the sense of (7.1). Then

ARG TE° Cix (G x* TR, (7.2)

p,Hg
where G x* TX is the semi-product group of G and TX with its operation

(91, w1) (g2, w2) = (9195 wiwa)

for gi,92 € G and wy,wy € T, where g1gy* is under operation on G and wiws is

under operation on TX. Here

9;1 = )‘5‘1 (A, (qu)) )

where g is the left-regular representation of G as in (7.1), and X is the group-action
of TX acting on Y){fHG in the sense of (6.3).

Proof. First, define the semi-product group

G = G x* T of groups G and TH (7.3)
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by the subgroup of the usual product group G x TX satisfying the operation

(glawl)(927w2) = (919501, w1w2)7

where
g;m = 8‘1 (>\’LU1 (ug2)) in Gv

where A\, € Aut(Ag) and ug, = Ag(g2) € Ag, for g € G and wy € TX. Then the
operation is closed and associative. And it acts on the Hilbert space

'ﬁﬁHG =Hg® '6;![7(

via a group-action A\g ® A. So, one can have the representation (ﬁff’HG, Ag ® A) of the
group GK in (7.3). Consider now the group C*-algebra

Ao ™ Cre (GF) (7.4)

K
BPYHG

as a C*-subalgebra of B (ﬁ;}fHG) .

Define a linear transformation
VAN ¢ = Ac O Ciey = AN g
by the morphism satisfying
U (ug @ wy) = (Aa @ A) (9, w;) (7.5)

for all ¢ € G and the generators w; of TK for j = 1,..., N. It is not difficult to
check this linear transformation W is bijective, by the very construction (7.5). Then
it satisfies that

W (g, ® wj,) (g & w3,)) =W (g esy @ w0y, )

= (Aa @A) (919, 7", wj,wy,)
= ((Ac @A) (91, w5,)) (A ® A)(g2,w;,))
=v (ugl ® wj1) v (ugz ® wj2)

for all g1, g2 € G and generators w;, and w;, of T C T n- So, for any y1,y2 € ﬂﬁ,g,
we have

U(y1y2) = U(y1)¥(y2) in AN o,

i.e., this bijective linear transformation ¥ of (7.5) is multiplicative.
Observe also that
W (g @ w))") = W (g1 © wy)

since uy = ug-1 = u;l on Hg, under the left regular unitary representation

=A@ Mg w) =Ae@ M) (g w )
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since w; are self-invertible for all j =1,..., N
= (e @) ((g, w)™") = ¥ (uy @ w;)"

for all g € G and generators w; of TX C Ty forall j =1,..., N. Therefore, under
linearity of W, it satisfies

U(y*) = ¥(y)" in AJI\{LG forall ye QlﬁG

So, the multiplicative bijective linear transformation ¥ of (7.5) is in fact a
#-isomorphism from 2AY ; onto AII\%G. It shows that two C*-algebras Qlﬁc and .AJI\(,G
are *-isomorphic. Since Qlﬁg and AI]\(,G are #-isomorphic by (6.12), we can conclude
that . .

Therefore, our K-subgroup dynamical C*-algebra Aﬁ’G = Ag x\ TK is x-isomorphic
to the group C*-algebra AIZ\%G =C% (Gﬁ) , where G is in the sense of (7.3). O

K
f’)PﬁHG

The above characterization (7.2) shows that if our K-subgroup C*-algebra A%’G =

Ag %, TK is induced by a group C*-algebra Ag, then it is understood as a new group
C*-algebra AX = C* (Gﬁ) generated by the semi-product group

e,
GK =G x* 3k,

Now, let us concentrate on the K-dynamical C*-probability space

(A]I\(/)GH @p,Hg) )

where AY ; = Ag xx TV, for a group G.
Define canonically the linear functional ¥¢ on the group C*-algebra Ag by

wG Ztgug déf tCG = Ztgug (gee)a gec ’ (76)

geG geG 9

where eq is the group-identity of G. Then this linear functional ¢ is not only
a well-defined linear functional but also it is a trace in the sense that

Yo (1y2) = Vg (yoy1)  forall yi1,y2 € Ag

(e.g., [12]), i.e., even though w1y # y2y1 in Ag, one has the same tracial (or
linear-functional) values for them under ¢¢ in C.

Then, by (6.26), (6.27) and (7.6), we have a well-defined linear functional
Yp,He = Ya @ ¢p on the K-subgroup dynamical C*-algebra

K * K
AN, = Ac O\ T v = AN g

as in Sections 6.2 and 6.3. And it forms our K-dynamical C*-probability space
(Aﬁ,Gv SDPVHG)'
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Proposition 7.3. Let ugw;, be free random wvariables in a K-dynamical

C*-probability space (Aﬁg, <pp,HG) for gi € G and generators wj, = of = of the
k) ‘E]'

K -subgroup Eﬁ fori=1,...,n andn € N. Then

¥Yp,Hg <Hugiwji> = 61_"1 Hp <ijiK N K) ) (7.7)
gi, €EG

i=1 i=1
=1

where § means the Kronecker delta.

Proof. Observe that

Yp,Ha ((ugl Wi, )(ugzwjz) s (ugn,wjn))

= Yc (ug, ug, - - - ug, ) pp (Wj, W), - . wj,)

by (6.27)

= Vc (Ugygy..,) (1p (Tj, 24, .. 75, ) K N K))

by (6.29)

_ {up (xj, ...z, ) KNK) if gigs...gn = eq,

0 otherwise,
by (7.6), for all g1,...,gn € G and generators w;, =of ... ,w; =af  of TY
J1 In
for all n € N. O

By (7.7), one has the following equivalent free-distributional data on
(Aﬁcw ©p,He) Via the Mébius inversion of Section 2.2.

Proposition 7.4. Let ug,w;, be free random variables of (AﬁjG, <pp,HG) , where g; €

G —{ec}, andw;, = of are generators of TK C €%y, fori=1,...,n, forn € N.
Ji ’
Then
kpHe (ug, Wy, -, Ug, Wj,)
> (Hup<(noxjk)KﬂK>)u(7r,ln) if n € 2N, (7.8)
= §{ 7eNCU(n) \VeEm kev
0 otherwise,

where NCY (n) is the subset of the noncrossing partition lattice NC(n) introduced in
(7.11) and (7.12) below.

Proof. Under the notations used in (6.31), we have that

k‘fL’HG (uglel, ce ,ugnwjn) = Z (H Pp,Hg (V)> /L(’/T, ln) (79)

TeENC(n) \Vem
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where
o
SOILHG(V) = 5Hogk, eq : UP <H'erKmK> Y
kev keV

by (6.31) and (7.7), for all V € m, # € NC(n) and n € N.

Remark first that if n is odd in N, then each noncrossing partition 7 € NC(n)
contains at least one odd block V' in the sense that V' has an odd cardinality, i.e., |V]|
is odd. If V' is odd, then

5H°gk, eo =0, (7.10)
keVv
since each g are assumed to be a non-identity in G. Therefore, the correspond-

ing block-depending free moment ¢, g,(V) = 0, and hence, the corresponding
partition-depending free moment vanish, too;

Pp,HG(T) = H Pp,tic(B) = (pp,ua(V)) H ¢pug(B) | =0,
Bén BAVer

by (7.10). Therefore, whenever n is odd in N, the free cumulant computation (7.9)
vanish, i.e.,
kPHE (uy w;, ... ug, wj,) = 0, whenever n is odd. (7.11)

Assume now that n is even in N. Define now a subset NC(n) of NC(n) by
NC¢(n) ={m € NC(n) : 7 has only even blocks},

ie, if # € NC.(n) and if V € 6 is a block, then |V is even, and vice versa.
Now, for the n-tuple of our given free random variables (under order)

U= (uglelv Ugo Wiy + s ugnwjn)7

define a subset NCY (n) of NC.(n) by

(7.12)

NCY(n) = {GGNCe(n)‘ for all V = (iy,...,in) €0, }

9ir Gio - - - Gi,, =€ In G

By the construction of the subset NCY(n) of (7.12) for an arbitrarily fixed even
number n € N, the formula (7.9) becomes

k%HG (ugl Wiyy .oy Ugy, wjn) = Z Yp,Heg (ﬂ'):u“(ﬂ'v 171)
TeNCY (n)

Z < H Pp,Ha (V)> U(ﬂ'a ln)

TeENCU (n) \Verm

> <Hup ((Ha:]k> KﬂK)) u(r, 1), O

TENCY (n) \Ver keV
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Recall that, by (6.32), if a1 and as are free in (A, ) and if
lup(mjiK N K) =1l= /’Lp(lex]éKm K)

for z;,,z;, € Gp, inducing the generator w;, = af@jik of our K-subgroup TX for
i = 1,2, then two free random variables a;w;, and aswj, are free in the K-dynamical
C*-probability space (Aﬁ, ©p, H) in general, for given C*-probability space (A, 1p).

Proposition 7.5. Suppose a group G is the free group F, with n-generators

{91,....9n}, for n € N and assume further that w; = afczjK are the generators

of our K -subgroup TX satisfying
n
Hp (ijkKﬂK> =1
k=1
for all (j1,...,jn) € {1,...,N}"™ and n € N. Then the K -subgroup C*-algebra A{{G

is x-isomorphic to

ARG “c (C7(2) xx TH) "2 4 (C*(2) 93 Ciew) - (7.13)

i= i=

where (xc) means the topological free product algebra, and where C*(Z) is the group
C*-algebra generated by the abelian infinite cyclic group Z of the integers.

Proof. By (6.32), the free random variables a;w; are free from each other in the
K-dynamical C*-probability space (AY 5, ¢p.s), where G is the free group F,
with n-generators {gi,..., g} for n € N. Recall also that under the canonical trace
¥, the group C*-algebra Ag generated by the free group G is *-isomorphic to

Ag = Ap, "= Ap, xc Ap,, = 4 C*(Z), (7.14)

i=1
whenever n; + ng = n for ny,ny € N (e.g., [12] and [15]). Remark again that the

above #-isomorphic relation (7.14) is determined by the trace )¢ on Ag. So, one can
get that

ANg - = =" AN ¢ = Ag O\ Ci v
= (% C*(Z)> @\ Cx N

by (7.14)

by (6.32). O
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7.2. AIS A CERTAIN QUOTIENT ALGEBRA OF M, (C) IN (TX, A4, \)

In this section, we fix n € N\ {1}, and a K-subgroup dynamical system (T, A, \)
induced by the K-subgroup

SK = <{wj = al;(zjl( ;V:1>
generating the corresponding K-subgroup dynamical C*-algebra
AR, = A, x\ TR

Here A,, is a certain quotient algebra of the matricial algebra M, (C) for n € N.
Throughout this section, we fix n € N\ {1}.
Now, let tr,, be the usual trace on M,(C),

tr ([tiglnsn) = 3 ta (7.15)
k=1

for all (n x n)-matrices [ti;]nxn € M, (C) with t;; € C forall 4,5 =1,...,n.

The algebra A, is defined by the quotient algebra of M, (C) by an equivalence
relation R,

A, = M, (C)/R, (7.16)
where
a1 Raz SLIN spec(ay) = spec(az)

for all a1, as € M, (C), where spec(a) means the spectrum of a for all a € M, (C).

Recall that the spectrum spec(a) of a matrix a is the collection of all eigenvalues
of a € M,(C). Recall also that, two matrices a; and ag are unitarily equivalent in
M, (C) if and only if

spec(ay) = spec(az)

as subsets of C. So, the above equivalence relation R of (7.16) again means that
a1Ras <= ay and as are unitarily equivalent in M, (C).
Note that whenever a is given in M, (C) with its spectrum

spec(a) = {t1,ta, ..., tn}

(without considering multiplicities of eigenvalues), one can find so-called the spectral
form a, of a,
tl *

to
ay = . , (7.17)

0 tn
in M,,(C) with
spec(ao) = {t1,t2,...,tn} = spec(a).
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Therefore, without loss of generality, one can understand the quotient algebra A,
of (7.16) as the collection of all spectral forms (7.17) of matrices in M, (C). So, one
can naturally define a linear functional ,, on A,, by

¥n (1) © tro(z) forall ze A, (7.18)

In fact, the element z of A, is an equivalence class [z,]r of the spectral form z, of x
in the sense of (7.17) in A, by the above discussion. So, one can simply let

T =2x,1n A,.

From now on, all elements 2 = [z]g of A, are regarded as the spectral forms z, of x
in A,. Thus, one can get that

Un(@) = Pn ([2]R) = tra(we) = > mut, (7.19)

tespec(z,)

by (7.17) and (7.18), where z, is the spectral forms of z,, for all x € A,,, and m;
mean the multiplicities of t € spec(x,).

Thus, indeed, one can get a well-determined C*-probability space (A, ), and
hence we have the K-dynamical C*-probability space

(Ag,nv (pP,Hn> )
induced by the K-subgroup dynamical system (X, A, A). In particular,
$p,H, = Vn ®¢p on mﬁ,n =Ap Ox Ty = A%,nv

where 1), is in the sense of (7.18), satisfying (7.19).

Proposition 7.6. Let ai,...,an € Ay, and w;, = a’; ¥+ generators of TR C &
- ;
for n € N, and let T; = a;wj;, be free random variables of the K-dynamical
C*-probability space (Aﬁ’n, @p,H”). We naturally assume each aj = [aj]lr of An
as its spectral form for all j =1,... n. Let
spec(a;) = {ti1, ..., tin} forall i=1,... n, (7.20)

without considering multiplicities of eigenvalues. Then

() () (5 (19) oo

Proof. By (6.29), the linear functional ¢, g, = ¥, ® ¢, satisfies

op,u, ((a1wj,) (agwy,) ... (anw;y,))
=Yy (ala;jh a;U“w” .. .a:fjlmwj”’l) op (wj,wj, ... w;,)

=1 (@as...an) pup (zj, 25, ...z, KN K)
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. Wi Wiy - Wi, 1, . .. . . . . .
since each a; "' 7?7 "~! is the isomorphic image of a;, which is unitarily equivalent

to a;, sharing the identical spectral forms, for all i =2,....n

=trp (a1a2...an) pp (T, 24, ... 25, KN K)
n

Htlk *

k=1

n
I tox
k=1

=tr, pp (g2, . x5, KN K)

0 H tnk
k=1

() o ( (e o))

Now, let ny,ne € N\ {1}, and let A,, and A,, be the corresponding quotient
algebras in the sense of (7.16). Construct now a direct product algebra Ay, yn,,

O

Anl,ng = Anl S An2~ (722)
Note that it is understood as the quotient algebra of the direct product algebra
M, (C) @ M,,,(C) under an equivalence relation R, +n,, where

d
(a1 ® b1) Ronyns (a2 @ b) £

spec(ay) = spec(ag) for ay,as € My, (C)

and
spec(by) = spec(bs) for by,be € M, (C).

It is not difficult to check that A, ,, has an inherited trace t,,, », from the trace
17, +n, ON the matricial algebra M, 4, (C). In fact, one has

wnth = wn1 D wnz on Anl,nz (723)
in the sense that
Vn (al ©® a2) = n, (al) + ¥n, (a2)

for all a1 @ as € M,, with a, € A, for k =1,2, under linearity.
As we discussed above, if a1 @ as € Ay, n,, then a; and ay are spectral forms in
A,,, respectively, in A,,,. So,

wnl,nz (al S aQ) = wnl (al) + wng (a2) = < Z mtt> + ( Z m58> (724)

t€spec(ar) s€spec(az)
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for all a1 ® az € Ay, pny, by (7.19) and (7.23), where m,; and m, are multiplicities of
t and s, respectively. However, recall that the direct sum a; ® as of two matrices aq
and ao satisfies

spec (a1 ® ag) = spec(ar) U spec(az) in C. (7.25)
So, the formula (7.24) satisfies

,(/)’I’Ll,’rlz (al ¥ a2> = Z myt, (726)

te€spec(ay)Uspec(az)

where m; means the multiplicities of ¢ “in a; & as”, by (7.25).
It is clear that two algebras A,, and A,, are free in the C*-probability space
(Any nss ¥ng ny)- Moreover,

(Anlﬂlz ) wnhnz) = (ATM ) wn1) *C (Anz ) wnz)

7.27
— (Ays Vo) & (Amystng) = (Amy ® Ay Gy @ o). 20

Proposition 7.7. Let (Ap, nys¥nin,) be a free probability space, where Ay, n, and
Yy .m, are in the sense of (7.22) and (7.26), respectively. Assume that the generators
w; =aof  of TR C T v satisfy

y ;

Ly ((ﬁ%) Kn K) =1 (7.28)
=1

for all (41,...,4n) € {1,2}" and n € N. Then

K

ME M, o TE AR wc AR, TEOAK oAk, (729)
Proof. Two C*-subalgebras
A=A, R (’:}‘{J\, and Ay =A,, ®x Q:*K,N
are free in (M]I\(,,n, cpp7Hn) , since condition (7.28) satisfies the general case (6.32), by

(7.27). So,

MK, “Z° A; #c As.
However, again by (7.27), we obtain
Aq xc Ay = A B As. O

The above structure theorem (7.29) can be proved by computing free cumulants
directly. Such free cumulants can be computed with help of (7.24), (7.25) and (7.26).
However, we provide the above alternative proof.
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