PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Impact of paving surface material on thermal conditions within a residential building

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents the impact of paving surface material on thermal comfort in a residential building. The aim of the study was to demonstrate differences in temperature, measured near a building’s walls, depending on their location (relative to the cardinal directions) and the type of paving surface material outside the building (in its immediate vicinity, considering the cardinal directions). The study found differences in temperature values recorded near walls located on the south-west side, which faced a garden and a grassy surface, compared to the temperature of the walls that faced a street with asphalt and concrete paving blocks. It should be noted that the study was carried out in the summer, when the interior of the building was not heated. The facade of the building had not been additionally insulated and retained its original historical form (facade render). The method used in the study consisted of temperature measurements taken near the building’s walls using a Steinberg System weather station’s sensors. The measurement results supported the hypothesis that wall temperature varies depending on a space’s placement relative to the cardinal directions and the surface paving material in the space adjoining the building. The results of the study are presented using line graphs. The study is of scientific value and the results may also be useful in site development planning practice. The thermal conditions are a major factor that affecting the comfort of various types of buildings, including housing.
Rocznik
Strony
141--155
Opis fizyczny
Bibliogr. 25 poz., rys.
Twórcy
  • Cracow University of Technology, Faculty of Architecture, Warszawska 24, 31-155 Kraków, Poland
  • Cracow University of Technology, Faculty of Architecture, Warszawska 24, 31-155 Kraków, Poland
  • Cracow University of Technology, Faculty of Environmental Engineering and Energy, Warszawska 24, 31-155 Kraków, Poland
Bibliografia
  • [1] Klemm P.: General Construction. Arkady, Warszawa 2005 (in Polish).
  • [2] Kowalewski G., Kostecki I., Jezierski W.: Assessment of thermal comfort in the single-family residential building after its thermal-modernisation. Civ. Environ. Eng. 8(2017), 2, 67–73 (in Polish).
  • [3] Galai O.M., Mahmoud H., Sailor D.: Impact of evolving building morphology on microclimate in a hot arid climate. Sustain. Cities Soc. 54(2020), 102011. doi:10.1016/j.scs.2019.102011
  • [4] Lai D., Liu W., Gan T., Liu K., Chen O.: A review of mitigating strategies to improve the thermal environment and thermal comfort in urban outdoor spaces. Sci. Total Environ. 661(2019), 337–353. doi: 10.1016/j.scitotenv.2019.01.062
  • [5] Matzarakis A., Mayer H., Iziomon M.G.: Applications of a universal thermal index: physiological equivalent temperature. Int. J. Biometeorol. 43(1999), 76–84.
  • [6] Huang T., Li J., Xie Y., Niu J., Ming Mak Ch.: Simultaneous environmental parameter monitoring and human subject survey regarding outdoor thermal comfort and its modelling. Build. Environ. 125(2017), 502–514. doi: 10.1016/j.buildenv.2017.09.015
  • [7] Elnabawi M.H., Hamza N., Dudek S.: Thermal perception of outdoor urban spaces in the hot arid region of Cairo, Egypt. Sustain. Cities Soc. 22(2016), 136–145. doi:10.1016/j.scs.2016.02.005
  • [8] Amindeldar S., Heidari S., Khalili M.: The effect of personal and microclimatic variables on outdoor thermal comfort: A field study in Tehran in cold season. Sustain. Cities Soc. 32(2017), 153–159. doi: 10.1016/j.scs.2017.03.024
  • [9] Chatzidimitriou A., Yannas S.: Street canyon design and improvement potential for urban open spaces; the influence of canyon aspect ratio and orientation on microclimate and outdoor comfort. Build. Environ. 38(2017), 85–101. doi: 10.1016/j.scs.2017.05.019
  • [10] Zhang L., Wei D., Hou Y., Du J., Liu Z., Zhang G., Shi L.: Outdoor thermal comfort of urban park — A case study. Sustainability 12(2020), 5, 1961. doi:10.3390/su12051961
  • [11] Zhu R., Zhang X., Yang L., Liu Y., Cong Y., Gao W.: Correlation analysis of thermal comfort and physiological responses under different microclimates of urban park. Case Stud. Therm. Eng. 34(2022), 102044. doi: 10.1016/j.csite.2022.102044
  • [12] Mohammadzadeh N., Karimi A., Brown R.D.: The influence of outdoor thermal comfort on acoustic comfort of urban parks based on plant communities. Build. Environ. 228(2023), 109884. doi: 10.1016/j.buildenv.2022.109884
  • [13] Mutani G., Todeschi V., Beltramino S.: Improving outdoor thermal comfort in built environment assessing the impact of urban form and vegetation. Int. J. Heat Technol. 40(2022), 1, 23–31. doi: 10.18280/ijht.400104
  • [14] Zhang Y., Liu Ch., Digital simulation for buildings’ outdoor thermal comfort in urban neighborhoods. Buildings 11(2021), 11, 541. doi: 10.3390/buildings11110541
  • [15] Kurniati R., Kurniawati W., Dewi D.I.K., Astuti M.F.K.: Measurement of thermal comfort in urban public spaces Semarang, Indonesia. Pertanika J. Sci. Technol. 29(2021), 3, 1371–1395. doi: 10.47836/pjst.29.3.01
  • [16] Hirashima S.Q.D., Ferreira D.G., De Assis E.S.: Thermal comfort description of urban structure types. In: PLEA 2018: Smart and Healthy within the Two-Degree Limit (Proc. 34th Int. Conf. on Passive and Low Energy Architecture, Dec. 10–12, 2018) Vol. 3, 1105–1106. The Chinese University of Hong Kong, Hong Kong 2018.
  • [17] Huang Ch., Tsai H., Chen H.: Influence of weather factors on thermal comfort in subtropical urban environments. Sustainability 12(2020), 5, 2001. doi: 10.3390/su12052001
  • [18] Balogun I.A., Toluwalase M.: The outdoor thermal comfort assessment of different urban configurations within Akure City, Nigeria. Urban Clim. 29(2019), 100489. doi:10.1016/j.uclim.2019.100489
  • [19] Lamarca C., Qüense J., Henríquez C.: Thermal comfort and urban canyons morphology in coastal temperate climate, Concepción, Chile. Urban Clim. 23(2018), 159–172. doi: 10.1016/j.uclim.2016.10.004
  • [20] Vučković D., Jovic S., Bozovic R., Dżamić V., Kićović D.: Potential of neuro-fuzzy methodology for forecasting of outdoor thermal comfort index at urban open spaces. Urban Clim. 28(2019), 100467. doi: 10.1016/j.uclim.2019.100467
  • [21] Urban J., Pikl M., Zemek F., Novotny J.: Using Google Street View photographs to assess long-term outdoor thermal perception and thermal comfort in the urban environment during heatwaves. Front. Environ. Sci. 10(2022), 878341. doi: 10.3389/fenvs.2022.878341
  • [22] Ma X., Leung T.M., Chau C.K., Yung E.H.K.: Analyzing the influence of urban morphological features on pedestrian thermal comfort. Urban Clim. 44(2022), 101192.doi: 10.1016/j.uclim.2022.101192
  • [23] Lai D., Lian Zh., Liu W., Guo Ch., Liu W., Liu K., Chen Q.: A comprehensive review of thermal comfort studies in urban open spaces. Sci. Total Environ. 742(2020),140092. doi: 10.1016/j.scitotenv.2020.140092
  • [24] Lewińska J., City climate. Threat, Resources, Shaping, Instytut Gospodarki Przestrzennej i Komunalnej, Oddział w Krakowie, Kraków 2000 (in Polish).
  • [25] https://manuals.expondo.com/10030583 (accessed 18 June 2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f5fd10a7-c603-4d66-90a4-3d19ce564a27
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.