PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

In Vitro Degradation Behaviours of PDO Monofilament and Its Intravascular Stents with Braided Structure

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Biodegradable intravascular stent has attracted more and more focus in recent years as an effective solution for angiostenosis. Ideal stents were expected to exhibit sufficient radial force to support the vascular wall, while suitable flexibility for the angioplasty. After vascular remodeling, stents should be degraded into small molecular and be eliminated from human body, causing no potential risk. In this paper, poly-p-dioxanone (PDO) monofilament was braided into net structure with four different braiding density, two of which exhibited sufficient radial force larger than 30 kPa, and three of which showed the bending rigidity within 11.7–88.1 N•mm2. The degradation behaviors of monofilaments and stents have been observed for 16 weeks. The findings obtained indicate that degradation first occurred in morphology region, which induced temporary increase of crystallinity, monofilament bending rigidity and stent mechanical properties. During this period, monofilament tends to be hard and brittle and lost its tensile properties. Then the crystalline region was degraded and stent mechanical properties decreased. All the results reveal that the PDO intravascular stents with braided structure were able to afford at least 10 weeks of sufficient support to the vascular wall.
Rocznik
Strony
80--89
Opis fizyczny
Bibliogr. 23 poz.
Twórcy
autor
  • College of Textiles, Donghua University, Shanghai 201620, China
  • Key Laboratory of Textile Science &Technology, Ministry of Education, China
autor
  • College of Textiles, Donghua University, Shanghai 201620, China
  • Key Laboratory of Textile Science &Technology, Ministry of Education, China
Bibliografia
  • [1] Scot, G., Patrick, W.S. (2010). Coronary stents: current status. Journal of the American College of Cardiology, Vol. 56 (10), 1-42.
  • [2] Baer, G.M., Small, W., Wilson, T.S., et al. (2007). Fabrication and in vitro deployment of a laser-activated shape memory polymer vascular stent. In: Biomedical Engineering online. http://www.biomedical-engineering-online.com/content/6/1/43
  • [3] Jurgen, H., Tobias, J., Hans, S., et al. (2003). Long-term outcome after implantation of bare metal stents for the treatment of coronary artery disease. Journal of Intervention Cardiology, Vol. 16 (6), 469-473.
  • [4] Michael, C., Jim, J., Derek, C., et al. (2006). Bare metal stent restenosis is not a benign clinical entity. American Heart Journal, Vol. 151 (6), 1260-1264.
  • [5] Magdalena, B.J., Bedzinski, R., Kozlowska, A. (2013). Mechanical, rheological, fatigue, and degradation behavior of PLLA, PGLA and PDGLA as materials for vascular implants. Meccanica, Vol. 48 (3), 721-731.
  • [6] Ormiston, J.A., Webster, M.W., Armstrong, G. (2007). First-in-human implantation of a fully bioabsorbable drug-eluting strent: the BVS poly-l-lactic acid everolimuseluting coronary stent. Catheterization and Cardiovascular Intervention, Vol. 69 (1), 128-131.
  • [7] Li, G., Chen, Y.F., Hu, J. (2013). A 5-fluorouracil-loaded polydioxanone weft-knitted stent for the treatment of colorectal cancer. Biomaterials, Vol. 34 (37), 9451-9461.
  • [8] Zamiri, P., Kuang, Y., Sharma, U., et al. (2010). The biocompability of rapidly degrading polymeric stents in porcine carotid. Biomaterials, Vol. 31 (31), 7847-7855.
  • [9] Marcos, A.S., Susana, G., Leni, M., et al. (2000). Study of hydrolytic degradation of polydioxanone PPDX. Polymer Degradation and Stability, Vol. 69 (2), 209-216.
  • [10] Chui, P.O., Ruth, E.C. (2002). The hydrolytic degradation of polydioxanone (PDS) sutures. Part I: morphological aspects. Journal of Biomedical Materials Research, Vol. 63 (3), 280-290.
  • [11] Stoeckel, D., Bonsignore, C., Duda, S. (2002). A survey of stent designs. Minimally Invasive Therapy & Allied Technologies, Vol. 11 (4), 137-147.
  • [12] Hamm, C.W., Beythien, C., Sievert, H., et al. (1995). Multicenter evaluation of the Strecker tantalum stent for acute coronary occlusion after angioplasty. American Heart Journal. Vol. 129 (3), 423-9.
  • [13] Mikkonen, J., Tormala, P., Kallomaki, M. (2009). Drugeluting bioabsorbable stents-an in vitro study. Acta Biomaterialia, Vol. 5 (8), 2894-2900.
  • [14] Vaclav, J., Ladislav, H., Jan, H., et al. (2011). Biodegradable polydioxanone stents: a new option for therapy-resistant anastomotic strictures of the colon. European radiology, Vol. 21 (9), 1956-1961.
  • [15] Stivaros, S.M., Williams, L.A., Senger, C. (2010). Woven polydioxanone biodegradable stents: a new treatment option for benign and malignant oesophageal strictures. European radiology, Vol. 20 (5), 1069-1072.
  • [16] Prendergast, P.J., Lally, C.S., Reid, D.A., et al. (2003) Analysis of prolapse in cardiovascular stents constitutive equation for vascular tissue and finite element modelling. Journal of Biomechanical Enginerring, Vol.125 (5), 692-699.
  • [17] Rieu, R., Barragan, P., Catherine, M., et al. (1999). Radial force of coronary stents: a comparative analysis. Catheterization and Cardiovascular Interventions, Vol. 46 (3), 380-391.
  • [18] Chen, M.C., Liu, C.T., Lai, W.Y. (2009). The characteristics and in vivo suppression of neointimal formation with sirolimus-eluting polymeric stents. Biomaterials, Vol. 30 (30), 79-88.
  • [19] Wang, Y.H., Dou, H.J., Sun, K., et al. (2010). Dynamic mechanical properties of biodegradable stents. Journal of Shanghai Jiaotong University, Vol. 44 (11), 1605-1609.
  • [20] Cabrera, M.S., Oomens, W.J., Bouten, V.C. (2013). Mechanical analysis of ovine and pediatric pulmonary artery for heart valve stent design. Journal of Biomechanics, Vol. 46 (12), 2075-2081.
  • [21] Schmidt, W., Andresen, R., Behrens, P., et al. (2004). Comparison of mechanical properties of peripheral self-expanding nitinol and balloon-expandable stainless-steel stents. Electronic Poster at the Annual Meeting and Postgraduate Course of the Cardiovascular and Interventional Radiological Society of Europe, Barcelona, Spain, 25-29.
  • [22] Ormiston, J.A., Dixon, S.R., Webster, M.W., et al. (2000). Stent Longitudinal Flexibility: A Comparison of 13 stent designs before and after balloon expansion. Catheterization and Cardiovascular Interventions, Vol. 50 (1), 120-124.
  • [23] Koji, M., Takashi, S. (2005). Effects of Stent Structure on Stent Flexibility Measurements. In: Annals of Biomedical Engineering, Vol. 33 (6), 733—742.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f5faa5d8-98e6-470d-b8f1-37bffd142f0b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.