Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Graph-based network modeling is becoming increasingly pervasive touching very different fields. Among these are social networks analysis and brain connectivity modeling. Though apparently very far apart, these two domains share the same questions about how the underlying network is structured and how this can be measured. This determines an a-priori unexpected convergence of the research efforts of two different communities, that is neurosciences and information technology. In this work, we put forth some basic issues emerging from the overlaps of the two domains and propose a first simple measure allowing to capture one among the features of interest: the transtopic closeness centrality. To this end, the related concepts are briefly recalled and two case studies are considered. Then, relying on social network analysis principles, the transposition to functional brain networks is proposed highlighting and discussing some of the inherent critical issues.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
169--186
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
autor
- Department of Computer Science, University of Verona, Verona, Italy
autor
- Department of Computer Science, University of Verona, Verona, Italy
autor
- Department of Computer Science, University of Verona, Verona, Italy
autor
- Department of Computer Science, University of Verona, Verona, Italy
autor
- Department of Computer Science, University of Verona, Verona, Italy
Bibliografia
- [1] Cristani M, Tomazzoli C, Olivieri F. Semantic Social Network Analysis Foresees Message Flows. In: Proceedings of the 8th International Conference on Agents and Artificial Intelligence. ISBN 978-989-758-172-4, 2016 pp. 296-303. doi:10.5220/0005832902960303.
- [2] Tomazzoli C, Cristani M, Fogoroasi D. Measuring Homophily. In: CEUR Workshop Proceedings. 2016 pp. 1-12.
- [3] De Domenico M, Sole-Ribalta A, Omodei E, Gomez S, Arena A. Centrality in interconnected multilayer networks. arXiv:1311.2906 [physics.soc-ph], Journal reference: Nature Communications 6, 6868 (2015), 2013. doi:10.1038/ncomms7868.
- [4] Landherr A, Friedl B, Heidemann J. A Critical Review of Centrality Measures in Social Networks. Business and Information Systems Engineering, 2010. 2(6):371-385. doi:10.1007/s12599-010-0127-3. URL http://dx.doi.org/10.1007/s12599-010-0127-3.
- [5] Kang SM. A note on measures of similarity based on centrality. Social Networks, 2007. 29(1):137-142. doi:http://dx.doi.org/10.1016/j.socnet.2006.04.004. URL http://www.sciencedirect.com/science/article/pii/S0378873306000153.
- [6] A Ramachandra Rao SB. Measures of Reciprocity in a Social Network. Sankhy: The Indian Journal of Statistics, Series A (1961-2002), 1987. 49(2):141-188. URL http://www.jstor.org/stable/25050639.
- [7] Storti SF, Galazzo IB, Khan S, Manganotti P, Menegaz G. Exploring the Epileptic Brain Network Using Time-Variant Effective Connectivity and Graph Theory. IEEE J Biomed Health Inform, 2017. 21(5):1411-1421.
- [8] Storti SF, Boscolo Galazzo I, Montemezzi S, Menegaz G, Pizzini FB. Dual-echo ASL contributes to decrypting the link between functional connectivity and cerebral blow flow. Hum Brain Mapp, 2017. 38(12):5831-5844.
- [9] Boscolo Galazzo I, Storti SF, Barnes A, De Blasi B, De Vita E, Koepp M, Duncan JS, Groves A, Pizzini FB, Menegaz G, Fraioli F. Arterial Spin Labeling Reveals Disrupted Brain Networks and Functional Connectivity in Drug-Resistant Temporal Epilepsy. Frontiers in Neuroinformatics, 2019. 12:101. doi:10.3389/fninf.2018.00101.
- [10] De Domenico M. Multilayer modeling and analysis of human brain networks. Gigascience, 2017. pp. 1-8. doi:10.1093/gigascience/gix004.
- [11] Muldoon S, Bassett D. Network and Multilayer Network Approaches to Understanding Human Brain Dynamics. Philosophy of Sciences, 2016. pp. 710-720.
- [12] Cole M, Bassett D, Power J, Braver T, Petersen S. Intrinsic and task-evoked network architectures of the human brain. Neuron., 2014. pp. 238-251. doi:10.1016/j.neuron.2014.05.014.
- [13] Zalesky A, Fornito A, Bullmore ET. Network-based statistic: identifying differences in brain networks. Neuroimage, 2010. 53(4):1197-1207.
- [14] Savadjiev P, Westin CF, Rathi Y. Vector Weights and Dual Graphs: An Emphasis on Connections in Brain Network Analysis. Computational Diffusion MRI. Mathematics and Visualization, 2014. pp. 3-12.
- [15] Tomazzoli C, Storti SF, Boscolo Galazzo I, Cristani M, Menegaz G. The Brain is a Social Network. In: CEUR Workshop Proceedings. 2017 pp. 1-6. URL http://ceur-ws.org/Vol-1959/.
- [16] Makris N, Meyer JW, Bates JF, Yeterian EH, Kennedy DN, Caviness VS. MRI-Based Topographic Parcellation of Human Cerebral White Matter and Nuclei: II. Rationale and Applications with Systematics of Cerebral Connectivity. NeuroImage, 1999. 9(1):18-45. doi:https://doi.org/10.1006/nimg.1998.0384. URL http://www.sciencedirect.com/science/article/pii/S1053811998903846.
- [17] Barch DM, Burgess GC, Harms MP, Petersen SE, Schlaggar BL, Corbetta M, Glasser MF, Curtiss S, Dixit S, Feldt C, Nolan D, Bryant E, Hartley T, Footer O, Bjork JM, Poldrack R, Smith S, Johansen-Berg H, Snyder AZ, Van Essen DC. Function in the human connectome: task-fMRI and individual differences in behavior. Neuroimage, 2013. 80:169-189.
- [18] Smith SM, Fox PT, Miller KL, Glahn DC, Fox PM, Mackay CE, Filippini N, Watkins KE, Toro R, Laird AR, Beckmann CF. Correspondence of the brain’s functional architecture during activation and rest. Proc. Natl. Acad. Sci. U.S.A., 2009. 106(31):13040-13045.
- [19] Bijsterbosch J, Smith S, Beckmann C. Introduction to Resting State FMRI Functional Connectivity. Oxford neuroimaging primers. Oxford University Press, 2017. ISBN 9780198808220.
- [20] Shen X, Tokoglu F, Papademetris X, Constable R. Groupwise whole-brain parcellation from restingstate fMRI data for network node identification. Neuroimage, 2013. 82:403-415. doi:doi:10.1016/j.neuroimage.2013.05.081.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f5f8e14b-abb8-46d6-9da0-6851e80fae68