PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigation of the Effect of Young’s Modulus on the Contact Strength of Metal Polymer Plain Bearings

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Using the author's method of research of hybrid (metal-polymer) plain bearings the calculation of their load carrying capacity (contact pressures) is carried out. Studies have been conducted for metal-polymer bearings with a bushing of two types of polymer composites: epoxy based antifriction composite materials DIAMANT Moglice (DIAMANT Metallplastic GmbH) and DK6 (PT) (fillers - graphite, MoS2, Zr). The elastic constants of composite materials, in particular the Young's modulus, have a noticeable effect on the contact pressures in metal-polymer bearings. The Young's modulus is significantly different in these composite materials. In accordance with this factor, the influence of load, bushing diameter and radial clearance on the maximum contact pressures was studied. Quantitative and qualitative regularities of maximum contact pressures from the accepted factors of influence: Young's modulus, loading, bushing diameter, radial clearance, type of bushing material are established. The obtained results are compared with the results obtained by known conventional calculating methods of contact pressures.
Twórcy
  • Department of Applied Mechanics and Materials Engineering, National Aviation University, Liubomyra Huzara ave. 1, 03058 Kiev, Ukraine
  • Department of Fundamentals of Technology, Lublin University of Technology, ul. Nadbystrzycka 38, 20-618 Lublin, Poland
  • Department of Applied Mechanics and Materials Engineering, National Aviation University, Liubomyra Huzara ave. 1, 03058 Kiev, Ukraine
  • Department of Mechanical Engineering, Lublin University of Technology, ul. Nadbystrzycka 36, 20-618 Lublin, Poland
  • Department of Applied Mechanics and Materials Engineering, National Aviation University, Liubomyra Huzara ave. 1, 03058 Kiev, Ukraine
Bibliografia
  • 1. Zwieżycki W. Forecasting of wearing parts of machines. Institute of Sustainable Technologies in Radom; 1999. (in Polish).
  • 2. Kuzmenko A.G. Development of methods of contact tribomechanics. KhNU. 2010. (In Ukrainian).
  • 3. Wielieba W. Maintenance-free plain bearings made of thermoplastic polymers. Ed. Wrocław University of Science and Technology, 2013. (in Polish).
  • 4. Dykha A., Sorokatyi R., Makovkin O., Babak O. Calculation-experimental modeling of wear of cylindrical sliding bearings. Eastern-European Journal of Enterprise Technologies. 2017; 89(1): 51–59. https://doi.org/10.15587/1729-4061.2017.109638.
  • 5. Dykha A., Marchenko D. Prediction the wear of sliding bearings. International Journal of Engineering & Technology. 2018; 7(2.23): 4–8. http://dx.doi.org/10.14419/ijet.v7i2.23.11872.
  • 6. Sorokatyi R., Chernets M., Dykha A., Mikosyanchyk O. Phenomenological model of accumulation of fatigue tribological damage in the surface layer of materials. Mechanisms and Machine Science. 2019; 73: 3761–3769. https://doi.org/10.1007/978-3-030-20131-9_371.
  • 7. Aulin V., Derkach O., Makarenko D., Hrynkiv A., Pankov A., Tykhyi A. Analysis of tribological efficiency of movable junctions polymeric-composite materials-steel. Eastern-European Journal of Enterprise Technologies. 2019; 100(12): 6–15. https://doi.org/10.15587/1729-4061.2019.176845.
  • 8. Rezaei A., Ost W., Van Paepegem W., De Baets P., Degrieck J. A study on the effect of the clearance on the contact stresses and kinematics of polymeric composite journal bearings under reciprocating sliding conditions. Tribology International. 2012; 48: 8–14. https://doi.org/10.1016/j.triboint.2011.06.031.
  • 9. Rezaei A., Ost W., Van Paepegem W., De Baets P., Degrieck J. Experimental study and numerical simulation of the large-scale testing of polymeric composite journal bearings: Three-dimensional and dynamic modelling. Wear. 2011; 270: 431–438. https://doi.org/10.1016/j.wear.2010.11.005.
  • 10. Rezaei A., Paepegem W.V., De Baets P., Ost W., Degrieck J. Adaptive finite element simulation of wear evolution in radial sliding bearing. Wear. 2012; 296(1–2): 660–671. https://doi.org/10.1016/j.wear.2012.08.013.
  • 11. Chernets M., Pashechko M., Nevchas A. Methods of forecasting and increasing the wear resistance of tribotechnical sliding systems (In 3 volumes). Vol. 1. Research and calculation of sliding tribosystems, methods to increase durability and wear resistance. KOLO: Drogobych, 2001 (in Ukrainian).
  • 12. Chernets M., Chernets J. Generalized method for calculating the durability of sliding bearings with technological out-of-roundness of details. Proc. IMechE. Part J: Journal of Engineering Tribology. 2015; 229(2): 216–226. https://doi.org/10.1177/1350650114554242.
  • 13. Chernets M.V. Tribo-contact tasks for cylindrical joints with technological non-circularity. Lublin: Lublin Polytechnic. 2013 (in Ukrainian).
  • 14. Chernets M., Chernets J., Kindrachuk M., Kornienko A. Methodology of calculation of metal-polymer sliding bearings fOr contact strength, durability and wear. Tribology in Industry. 2020; 42(4), 572–584. https://doi.org/10.24874/ti.900.06.20.10.
  • 15. Chernets M.V., Shil’ko S.V., Pashechko M.I., M. Barshch M. Wear resistance of glass- and carbon-filled polyamide composites for metal-polymer gears. J. of Friction and Wear. 2018; 39(5): 361–364. DOI: 10.3103/S1068366618050069.
  • 16. Budynas R.G., Nisbett J.K. Shigley’s Mechanical Engineering Design. McGraw-Hill; 2019.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna dpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f5f88b41-ec7d-4cb0-9ab6-23f6384dee0f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.