PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Impact of the water composition on the degradation kinetics of natural organic matter in photocatalytic membrane reactors

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Decomposition kinetics of natural organic substances during the photocatalytic process with a semi-conductor TiO2 has been investigated. In the study, a laboratory reactor Heraeus and in a photocatalytic membrane reactor were used. Simulated solutions of deionized water, surface water and fulvic acids, differing in composition, were tested in the experiment. In order to determine reaction rate constants, the Langmuir–Hinshelwood kinetic model based on the first order reaction was applied. It was found that photocatalytic process enabled effective degradation of natural organic substances although its run was affected by inorganic ions, mainly those producing water hardness, present in water.
Rocznik
Strony
29--39
Opis fizyczny
Bibliogr. 17 poz., tab., rys.
Twórcy
autor
  • Silesian University of Technology, Faculty of Energy and Environmental Engineering, Institute of Water and Wastewater Engineering, Konarskiego18, 44-100 Gliwice, Poland
Bibliografia
  • [1] NIKOLAOU A.D., LEKKAS T.D., The role of natural organic matter during formation of chlorination by-products. A review, Acta Hydroch. Hydrob., 2001, 29, 63.
  • [2] BODZEK M., RAJCA M., Photocatalysis in the treatment and disinfection of water. Part I. Theoretical backgrounds, Ecol. Chem. Eng., 2012, 19, 489.
  • [3] ATHANASEKOU C.P., ROMANOSA G.E., KATSAROSA F.K., KORDATOSB K., LIKODIMOSA V., FALARASA P., Very efficient composite titania membranes in hybrid ultrafiltration/photocatalysis water treatment processes, J. Membrane Sci., 2012, 392–393, 192.
  • [4] SONG H., SHAO J., HE Y., LIU B., ZHONG X., Natural organic matter removal and flux decline with PEG–TiO2-doped PVDF membranes by integration of ultrafiltration with photocatalysis, J. Membrane Sci., 2012, 48, 405–406.
  • [5] PATSIOS S.I., SARASIDIS V.C., KARABELAS A.J., A hybrid photocatalysis–ultrafiltration continuous process for humic acids degradation, Sep. Purif. Technol., 2013, 104, 333.
  • [6] PAPAGEORGIOU S.K., KATSAROS F.K., FAVVAS E.P., ROMANOS G.E., ATHANASEKOU C.P., BELTSIOS K.G., TZIALLA O.I., FALARAS P., Alginate fibers as photocatalyst immobilizing agents applied in hybrid photocatalytic/ultrafiltration water treatment processes, Water Res., 2012, 46, 1858.
  • [7] ROMANOS G.E., ATHANASEKOU C.P., KATSAROS F.K., KANELLOPOULOS N.K., DIONYSIOU D.D., LIKODIMOS V.,FALARAS P., Double-side active TiO2-modified nanofiltration membranes in continuous flow photocatalytic reactors for effective water purification, J. Hazard. Mater., 2012, 304, 211–212.
  • [8] MOZIA S., Photocatalytic membrane reactors (PMRs) in water and wastewater treatment. A review, Sep. Purif. Technol., 2010, 73, 71.
  • [9] XIAOJU Y., RUILING B., SHUILI Y., Effect of inorganic ions on the photocatalytic degradation of humic acid, Russ. J. Phys. Chem. A, 2012, 86 (8), 1318.
  • [10] SELVAM K., MURUGANANDHAM M., MUTHUVEL I., The influence of inorganic oxidants and metal ions on semiconductorsensitized photodegradation of 4-fluorophenol, Chem. Eng. J., 2007, 128, 51.
  • [11] ZAINAL Z., LEE C., HUSSEIN Z., Effect of supporting electrolytes in electrochemically-assisted photodegradation of an azo dye, J. Photochem. Photobiol. A, 2005, 172, 316.
  • [12] CHONG M.N., JIN B., CHOW C.W.K., SAINT C., Recent developments in photocatalytic water treatment technology. A review, Water Res., 2010, 44, 2997.
  • [13] NAKATA K., FUJISHIMA A., TiO2 photocatalysis: Design and applications, J. Photochem. Photobiol. C: Photochem. Rev., 2012, 13, 169.
  • [14] BENHAJADY M.A., ALAMDARY M.E., MODIRSHAHLA N., Investigation of the effect of heat treatment process on characterictics and photocatalytic activity of TiO2–UV100 nanoparticles, Environ. Protect. Eng., 2013, 39 (1), 33.
  • [15] JANUS M., MARKOWSKA-SZCZUPAK A., KUSIAK-NEJMAN E., MORAWSKI A.W., Disinfection of E. coli by carbon modified TiO2 photocatalysts, Environ. Protect. Eng., 2012, 38 (2), 90.
  • [16] FU J., JI M., ZHAO Y., WANG L., Kinetics of aqueous photocatalytic oxidation of fulvic acids in a photocatalysis – ultrafiltration reactor (PUR), Sep. Purif. Technol., 2006, 50, 107.
  • [17] MONTAZEROZOHORI M., NASR-ESFAHANI M., JOOHARI S., Photocatalytic degradation of an organic dye in some aqueous buffer solutions using nano titanium dioxide: a kinetics study, Environ. Protect.Eng., 2012, 38 (3), 46
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f5f009cc-aa40-4ba6-91d2-bc2dc0e72b70
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.