PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Methods of real-time parametric diagnostics for marine diesel engines

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Using modern high-performance microcontrollers with wireless interfaces, built-in ADCs and low overall consumption, we develop a portable, real-time parametric diagnostic system for marine engines. The system is based on the use of modern Android/iOS gadgets that receive information from sensors via Bluetooth and then carry out the necessary calculations and display charts and data in real time. The system developed here uses a combination of a gas pressure sensor in the working cylinder and a vibroacoustic sensor, which expands the diagnostic capabilities of marine diesel engines under operating conditions. This solution allows for diagnosis of the fuel injection system, the valve train mechanism, and several other engine systems. In order to develop a portable diagnostic system for marine diesel engines, it is first necessary to solve the problem of analytically determining top dead centre (TDC), since such a system does not use special sensors for this. An algorithm for determining TDC is proposed here, based on an analysis of the measured pressure diagram rather than its derivative, which minimises the influence of digital and analogue noise. Our algorithm for determining TDC and subsequent data synchronisation is applicable in the absence of information about the actual compression ratio in the cylinder, which is a typical scenario for modern engines with variable valve timing. The algorithm also works under conditions of only approximate data on the charge air pressure, which are refined during the iteration process. A formula is proposed for determining the initial TDC position. Parameters for irregular operation of the engine are considered, and can be calculated in real time using time diagrams of pressure and vibration. Methods for expressly assessing the stability of the functioning of the main engine systems by monitoring and analysing a number of successive operating cycles are considered. To assess the unevenness of operation of the engine, a dispersion estimate of the deviations in the main parameters is used. To enable a comprehensive assessment of the engine stability in real time, the CII (cycle irregularity index) criterion is developed. The data processing methods described in this article provide an accurate estimate of the indicated power, due to the precise determination of TDC, thereby enabling an analysis of the stability of the operating cycles, optimal tuning of the engine systems, and monitoring of the results during operation.
Rocznik
Tom
Strony
71--84
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
  • Odesa National Maritime University, Odesa, Ukraine, Ukraine
  • Marine Power Plants and Technical Operation Department in Odesa National Maritime University, Ukraine
  • Marine Power Plants and Technical Operation Department of Odessa National Maritime University, Ukraine
  • Department Engineering Sciences of Danube Institute of National University ≪Odesa maritime academy≫, Ukraine
  • Department Ship Power Plants and technical operation of Odessa National Maritime University, Ukraine
  • Department Engineering Sciences of Danube Institute of National University ≪Odesa maritime academy≫, Ukraine
Bibliografia
  • 1. IMO. International convention for the safety of life at sea, SOLAS consolidated edition. London, International Maritime Organization, 2020.
  • 2. Varbanets R, Minchev D, Savelieva I, Rodionov A, Mazur T, Psariuk S, Bondarenko V. Advanced marine diesel engines diagnostics for IMO decarbonization compliance. AIP Conf. Proc. 2024, 3104(1), 020004. https://doi.org/10.1063/5.0198828.
  • 3. Heywood J B. Internal combustion engine fundamentals, 2nd ed. New York, McGraw-Hill Education; 2018.
  • 4. Varbanets R. Diagnostic control of the working proces of marine diesel engines in operation. Dissertation for Doctor of Technical Sciences, Odessa National Maritime University, 2010.
  • 5. TDC Sensor System. 2024. Retrieved from https://www.kistler. com/INT/en/cp/top-dead-center-sensor-systems-2629d/P0001160.
  • 6. Polanowski S. Determination of location of top dead centre and compression ratio value on the basis of ship engine indicator diagram. Polish Maritime Research 2008, 2(56). https://doi.org/10.2478/v10012-007-0065-2.
  • 7. Tunestal P. Model based TDC offset estimation from motored cylinder pressure data. Proceedings of the 2009 IFAC Workshop on Engine and Powertrain Control, Simulation and Modeling IFP, RueilMalmaison, France, Nov. 30–Dec. 2, 2009. https://doi.org/10.3182/20091130-3-FR-4008.00032.
  • 8. Pipitone E, Beccari A. Determination of TDC in internal combustion engines by a newly developed thermodynamic approach. Applied Thermal Engineering, 2009.
  • 9. Staś M. An universally applicable thermodynamic method for TDC determination. SAE Technical Paper 2000-01-0561. 2000. Retrieved from http://papers.sae.org/2000-01-0561/. doi, 10.4271/2000-01-0561.
  • 10. Tazerout M, Le Corre O, Rousseau S. TDC determination in IC engines based on the thermodynamic analysis of the temperature-entropy diagram. SAE Technical Paper 1999-01-1489. 1999. Retrieved from http://papers.sae.org/1999-01-1489/. doi, 10.4271/1999-01-1489.
  • 11. Varbanets R A, Zalozh V I, Shakhov A V, Savelieva I V, Piterska V M. Determination of top dead centre location based on the marine diesel engine indicator diagram analysis. Diagnostyka 2020, 21(1), 51–60. https://doi.org/10.29354/diag/116585.
  • 12. Neumann S, Varbanets R, Kyrylash O, Yeryganov O V, Maulevych V O. Marine diesels working cycle monitoring on the base of IMES GmbH pressure sensors data. Diagnostyka 2019, 20(2), 19–26. https://doi.org/10.29354/diag/104516.
  • 13. Varbanets R, Karianskyi S, Rudenko S, Gritsuk I V, Yeryganov A, Kyrylash O, Aleksandrovskaya N. Improvement of diagnosing methods of the diesel engine functioning under operating conditions (No. 2017-01-2218). SAE Technical Paper, 2017.
  • 14. Doctor Analysis Software V6.4. 2024. Retrieved from https://iconresearch.co.uk/wp-content/uploads/2017/10/doctor-v6-4-reference-guide-rev-1-4.pdf.
  • 15. Minchev D, Varbanets R, Shumylo O, Zalozh V, Aleksandrovska N, Bratchenko P Truong T H. Digital twin test-bench performance for marine diesel engine applications. Polish Maritime Research 2023, 30(4), 81–91. https://doi.org/10.2478/pomr-2023-0061.
  • 16. Neumann S, Varbanets R, Minchev D, Malchevsky V, Zalozh V. Vibrodiagnostics of marine diesel engines in IMES GmbH systems. Ships and Offshore Structures 2023, 18(11), 1535-1546. https://doi.org/10.1080/17445302.2022.2128558.
  • 17. Neumann S. High temperature pressure sensor based on thin film strain gauges on stainless steel for continuous cylinder pressure control. CIMAC Congress Digest, Hamburg. 2001, pp. 1–12.
  • 18. Lehmann & Michels GmbH. Premet type L, LS, and XL electronic indicators. 2006. Retrieved from http://www.lemag.de/fileadmin/user_upload/PREMET_liste_100_04_2006.pdf.
  • 19. Maridis GmbH. MarPrime technical data. Maridis GmbH. Rostock, Germany; 2015.
  • 20. Varbanets R, Fomin O, Pištěk V, Klymenko V, Minchev D, Khrulev A, Zalozh V, Kučera P. Acoustic method for estimation of marine low-speed engine turbocharger parameters. Journal of Marine Science and Engineering 2021, 9(3), 321. Retrieved from http://dx.doi.org/10.3390/jmse9030321.
  • 21. Minchev D, Varbanets R, Aleksandrovskaya N, Pisintsaly L. Marine diesel engines operating cycle simulation for diagnostics issues. Acta Polytechnica 2021, 3(61), 428–440. http://dx.doi.org/10.14311/AP.2021.61.0435.
  • 22. Shi J, Wang T, Zhao Z, Wu Z, Zhang Z. Cycle-to-cycle variation of a diesel engine fueled with Fischer–Tropsch fuel synthesized from coal. Appl. Sci. 2019, 9, 2032. https://doi.org/10.3390/app9102032.
  • 23. Raspberry Pi Pico W and Pico WH. 2024. Retrieved from https://www.raspberrypi.com/documentation/microcontrollers/raspberry-pi-pico.html.
  • 24. Blitz-PRO by D. S. Minchev. User’s manual. Retrieved from, http://blitzpro.zeddmalam.com/ extra/Tutorial/Help.pdf.
  • 25. Minchev D S, Gogorenko O A, Varbanets R A, Moshentsev Y L, Pištěk V, Kučera P, et al. Prediction of centrifugal compressor instabilities for internal combustion engines operating cycle simulation. Proceedings of the Institution of Mechanical Engineers, Part D:Journal of Automobile Engineering. 2022. https://doi.org/10.1177/09544070221075419.
  • 26. Neumann S. High temperature pressure sensor based on thin film strain gauges on stainless steel for continuous cylinder pressure control. CIMAC Congress Digest. Hamburg. 2001. pp. 1–12.
  • 27. Himmelblau D M. Applied nonlinear programming. 1972. 28. Powell M J D. An efficient method for finding the minimum of a function of several variables without calculating derivatives. Computer J. 1964, 7, 155.
  • 29. Melnyk O, Onyshchenko S, Onishchenko O, Lohinov O, Ocheretna V. Integral approach to vulnerability assessment of ship’s critical equipment and systems. Transactions on Maritime Science 2023, 12(1). doi, 10.7225/toms.v12.n01.002.
  • 30. Melnyk O, Onyshchenko S, Onishchenko O, Shumylo O, Voloshyn A, Koskina Y, Volianska Y. Review of ship information security risks and safety of Maritime transportation issues. TransNav 2022, 16(4), 717-722. doi, 10.12716/1001.16.04.13.
  • 31. Orobey V, Nemchuk O, Lymarenko O, Piterska V, Lohinova L. Taking account of the shift and inertia of rotation in problems of diagnostics of the spectra of critical forces mechanical systems. Diagnostyka 2021, 22(1), 39–44. https://doi.org/10.29354/diag/132555.
  • 32. IMO. International convention for the safety of life at sea, part B. Prevention of fire and explosion, paragraph 2.2.5.2, SOLAS consolidated edition. London, International Maritime Organization, 2020.
  • 33. Shi J, Wang T, Zhao Z, Wu Z, Zhang Z. Cycle-to-cycle variation of a diesel engine fueled with Fischer–Tropsch fuel synthesized from coal. Appl. Sci. 2019; 9: 2032. https://doi.org/10.3390/app9102032.
  • 34. Schmillen K, Wolschendorf J. Cycle-to-cycle variations of combustion noise in diesel engines. SAE Transactions 1989, 98, 60-70. http://www.jstor.org/stable/44580924.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f5ec0196-3245-41bd-a524-522c5c038a5f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.