PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Testing of a four-channel Stokes polarimeter performance for intrusion detection in QKD systems

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The most mature quantum key distribution systems available on the market is the class of prepare-and-measure systems which are vulnerable to eavesdropping attacks. Therefore, monitoring optical properties of such a system should be enhanced. This paper presents a measurement methodology, characterisation, and testing of a four-channel Stokes polarimeter implemented into the send-and-return quantum key distribution system with faint pulses. The developed polarimetric setup is a complete amplitude-division Stokes polarimeter, the main objective of which is to define changes in the polarization state of light pulses. The measurement method is based on intensity measurements of four selected polarization components. The four-channel Stokes polarimeter was characterised and its performance was compared with a commercial instrument. At this stage of the polarimeter development, different signal processing paths were proposed. The influence of fibre infringement was observed as a rapidly changing polarisation state and, as a result, intrusion threshold levels were determined for the analysed signals for the quantum key distribution fibre-optic link tested.
Rocznik
Strony
art. no. e153182
Opis fizyczny
Bibliogr. 36 poz., rys., tab., wykr.
Twórcy
  • Institute of Optoelectronics, Military University of Technology, ul. gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
  • Institute of Optoelectronics, Military University of Technology, ul. gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
autor
  • Institute of Micromechanics and Photonics, Warsaw University of Technology, ul. św. Andrzeja Boboli 8, 02-525 Warsaw, Poland
autor
  • Faculty of Advanced Technologies and Chemistry, Military University of Technology, ul. gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
Bibliografia
  • [1] Bernstein, D. & Lange, T. Post-quantum cryptography. Nature 549, 188-194 (2017). https://doi.org/10.1038/nature23461.
  • [2] Kumar, M. & Pattnaik, P. Post Quantum Cryptography(PQC) - An overview. (Invited Paper). in 2020 IEEE High Performance Extreme Computing Conference (HPEC) 1-9 (IEEE, 2020). https://doi.org/10.1109/HPEC43674.2020.9286147.
  • [3] Kuo, Y.-M., Garcia-Herrero, F., Ruano, O. & Maestro, J. A. RISC-V galois field ISA extension for non-binary error-correction codes and classical and post-quantum cryptography. IEEE Trans. Comput. 72, 682-692 (2022). https://doi.org/10.1109/TC.2022.3174587.
  • [4] Zapatero, V., Navarrete, A. & Curty, M. Implementation security in quantum key distribution. Adv. Quantum Technol. 2024, 2300380 (2024). https://doi.org/10.1002/qute.202300380.
  • [5] Mayers, D. Unconditional security in quantum cryptography. J. ACM 48, 351-406 (2001). https://doi.org/10.48550/arXiv.quant-ph/9802025.
  • [6] Scarani, V. et al. The security of practical quantum key distribution. Rev. Mod. Physics 81, 1301 (2009). https://doi.org/10.1103/RevModPhys.81.1301.
  • [7] Diamanti, E., Lo, H.-K., Qi, B. & Yuan, X. Practical challenges in quantum key distribution. npj Quantum Inf. 2, 16025 (2016). https://doi.org/10.1038/npjqi.2016.25.
  • [8] Bennett, C. H. & Brassard, G. Quantum cryptography: Public key distribution and coin tossing. Theor. Comput. Sci. 560, 7-11 (2014) https://doi.org/10.1016/j.tcs.2014.05.025.
  • [9] Bennett, C. H. Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121 (1992). https://doi.org/10.1103/PhysRevLett.68.3121.
  • [10] Bruβ, D. Optimal eavesdropping in quantum cryptography with six states. Phys. Rev. Lett. 81, 3018 (1998). https://doi.org/10.1103/PhysRevLett.81.3018.
  • [11] Woo, M. K. et al. Plug-and-play QKD architecture with a self-optical pulse train generator. Opt. Express 30, 29461-29471 (2022). https://doi.org/10.1364/OE.463283.
  • [12] IDQuantique. https://www.idquantique.com/quantum-safe-security/products/#quantum_key_distribution (Accessed: 23th May 2024).
  • [13] Toshiba Digital Solutions Corporation. https://www.global.toshiba/ww/products-solutions/security-ict/qkd/products.html#4 (Accessed: 23th May 2024).
  • [14] Nicholson, G. & Temple, D. J. Polarization fluctuation measure-ments on installed single-mode optical fiber cables. J. Light. Technol. 7, 1197-1200 (1989). https://doi.org/10.1109/50.32382.
  • [15] Ding, Y. et al. Polarization variations in installed fibers and their influence on quantum key distribution systems. Opt. Express 25, 27923-27936 (2017). https://doi.org/10.1364/OE.25.027923.
  • [16] Ramos, M. F., Silva, N. A., Muga, N. J. & Pinto, A. N. Full polarization random drift compensation method for quantum communication. Opt. Express 30, 6907-6920 (2022). https://doi.org/10.1364/OE.445228.
  • [17] Zhao, H. et al. Continuous-variable quantum key distribution robust against environmental disturbances. Opt. Express 32, 7783-7799 (2024). https://doi.org/10.1364/OE.510392.
  • [18] MacDonald, G. G. Detecting Eavesdropping Activity in Fiber Optic Networks. (The University of Oklahoma, 2012).
  • [19] Chen, Y., Fu, Y., Xiong, J. & Wang, Z. Distributed fiber birefrin-gence measurement using pulse-compression Φ-OTDR. Photonic Sens. 11, 401-410 (2021). https://doi.org/10.1007/s13320-020-0604-3.
  • [20] Su, Y., Zhang, C., Xu, Z. & Wang, Y. The Pressure Sensing Method Based on Polarization Properties in Fiber. in IEEE 2021 13th International Conference on Advanced Infocomm Technology ICAIT 9-15 (IEEE, 2021). https://doi.org/10.1109/ICAIT52638.2021.9702021.
  • [21] Su, Y., Zhou, H., Wang, Y. & Shen, H. A novel polarization demodulation method using polarization beam splitter (PBS) for dynamic pressure sensor. Opt. Fiber Technol. 41, 69-73 (2018). https://doi.org/10.1016/j.yofte.2017.12.015.
  • [22] Huang, Z., Wu, C. & Wang, Z. Stress direction measurement based on polarization state in optical fibers using the quaternion method. IEEE Photonics J. 9, 1-11 (2017). https://doi.org/10.1109/JPHOT.2017.2764102.
  • [23] Tan, S. J., Tiu, Z. C., Cheng, X. S. & Ahmad, H. All Fiber Temperature Sensor Based on TMD Alloy Coated Tapered Fiber. in 2020 IEEE 8th International Conference on Photonics (ICP) 89-90 (2020). https://doi.org/10.1109/ICP46580.2020.9206484.
  • [24] El Hajj, R., MacDonald, G., Verma, P. & Huck, R. Implementing and testing a fiber-optic polarization-based intrusion detection system. Opt. Eng. 54, 096107 (2015). https://doi.org/10.1117/1.OE.54.9.096107.
  • [25] Rashleigh, S. C. Origins and control of polarization effects in single-mode fibers. J. Light. Technol. 1, 312-331 (1983). https://doi.org/10.1109/JLT.1983.1072121.
  • [26] Iqbal, M. Z., Fathallah, H. & Belhadj, N. Optical Fiber Tapping: Methods and Precautions. in 8th International Conference on High-Capacity Optical Networks and Emerging Technologies 164-168 (IEEE, 2011). https://doi.org/10.1109/HONET.2011.6149809.
  • [27] Shibata, S., Hagen, N., Kawabata, S. & Otani, Y. Compact and high-speed Stokes polarimeter using three-way polarization-preserving beam splitters. Appl. Opt. 58, 5644-5649 (2019). https://doi.org/10.1364/AO.58.005644.
  • [28] Gamiz, V. L. Performance of a four-channel polarimeter with low-light-level detection. Proc. SPIE 3121, Polarization: Measurement, Analysis, and Remote Sensing (1997). https://doi.org/10.1117/12.283869.
  • [29] Negara, C., Beyerer, J. & Langle T. Simplified Stokes polarimeter based on division-of-amplitude. Proc. SPIE 11144, 111441B (2019). https://doi.org/10.1117/12.2532399.
  • [30] Goldberg, A. Z. et al. Quantum concepts in optical polarization. OSA 13, 1-59 (2020). https://doi.org/10.1364/AOP.404175.
  • [31] Zhu, Q. et al. Autonomic end-to-end quality-of-service assurance over QKD-secured optical networks. Opt. Express 32, 18317-18333 (2024). https://doi.org/10.1364/OE.516443.
  • [32] Goldstein, D. Polarized Light, Revised and Expanded, 2nd Edition. (Boca Raton, 2003). https://doi.org/10.1201/9780203911587.
  • [33] Peinado, A., Lizana, A., Vidal, J., Iemmi, C. & Campos, J. Optimization and performance criteria of a Stokes polarimeter based on two variable retarders. Opt. Express 18, 9815-9830 (2010). https://doi.org/10.1364/OE.18.009815.
  • [34] Sun, S. H., Jiang, M. S. & Liang, L. M. Passive Faraday mirror attack in practical two-way quantum key distribution system. Phys. Rev. A 83, 062331 (2011). https://doi.org/10.48550/arXiv.1203.0739.
  • [35] Takesue, H., Honjo, T., Tamaki, K. & Tokura, Y. Differential phase shift-quantum key distribution IEEE Commun. Mag. 47, 102-106 (2009). https://doi.org/10.1109/MCOM.2009.4939284.
  • [36] Azzam, R. M. A. Poincaré sphere representation of the fixed-polarizer rotating-retarder optical system. J. Opt. Soc. Am. A 17, 2105-2107 (2000). https://doi.org/10.1364/JOSAA.17.002105.
Uwagi
1. Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
2. This project has received funding from the research and innovation program of the National Center for Research and Development under a grant agreement of DOB SZAFIR/01/A/023/01/2020.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f5e81ff8-bce0-4b79-b8cf-29bbc8c79c00
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.