Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The most frequently used method for measuring surface roughness is profilographometry. However, with complex and non-homogeneous surfaces, this method may be subject to large errors because of its contact nature and limitations related to the geometry of the measuring head. In this study, the surface topography was examined on polypropylene injection moldings produced using an injection mold with a complex molding cavity surface. The moldings were modified using a Nd:YAG laser, and the obtained structures were examined using two measurement methods, i.e. contact (profilographometry) and optical (3D digital microscopy). Researchers performed a statistical analysis to determine the differences between the measurement results obtained for the two methods. Additionally, the impact of the laser parameters on the modified surface was determined. The obtained results showed significant differences between the values of measurements made using different methods, especially in the case of surfaces that were modified by the laser beam to the greatest extent (laser A parameters). In all cases where a statistically significant difference was found between the measurement results, the mechanical method showed lower roughness values than the optical method, and the average difference between these results was 15%.
Wydawca
Rocznik
Tom
Strony
245--257
Opis fizyczny
Bibliogr. 27 poz., fig., tab.
Twórcy
autor
- Faculty of Mechanical Engineering, Department of Manufacturing Techniques, Bydgoszcz University of Science and Technology, ul. Kaliskiego 7, 85-796 Bydgoszcz, Poland
autor
- Faculty of Mechanical Engineering, Department of Manufacturing Techniques, Bydgoszcz University of Science and Technology, ul. Kaliskiego 7, 85-796 Bydgoszcz, Poland
autor
- Faculty of Mechanical Engineering, Department of Manufacturing Techniques, Bydgoszcz University of Science and Technology, ul. Kaliskiego 7, 85-796 Bydgoszcz, Poland
Bibliografia
- 1. Yao Z., Hyeon Seong J., Jang Y.-S. Environmental toxicity and decomposition of polyethylene, Ecotoxicology and Environmental Safety, 2022; 242: 113933, https://doi.org/10.1016/j.ecoenv.2022.113933
- 2. Naveed A., Zeeshan M., Iqbal N., Farooq M.Z., Shah S.A. Investigation on bio-oil yield and quality with scrap tire addition in sugarcane bagasse pyrolysis, Journal of Cleaner Production, 2018; 196: 927–934, https://doi.org/10.1016/j.jclepro.2018.06.142
- 3. Feil A., Pretz T. Chapter 11 - Mechanical recycling of packaging waste, Editor(s): Trevor M. Letcher, Plastic Waste and Recycling, Academic Press, 2020; 283–319, https://doi.org/10.1016/B978-0-12-817880-5.00011-6
- 4. Rajeshkumar G., Balaji B.A., Seshadri S.A. 10 - Compression and injection molding techniques, Editor(s): R. ArunRamnath, Mavinkere Rangappa Sanjay, Suchart Siengchin, Vincenzo Fiore, In Woodhead Publishing Series in Composites Science and Engineering, Cellulose Fibre Reinforced Composites, Woodhead Publishing, 2023; 165–181, https:// doi.org/10.1016/B978-0-323-90125-3.00018-5
- 5. Czepiel, M. Bańkosz, M. Sobczak-Kupiec, A. Advanced Injection Molding Methods: Review. Materials 2023; 16: 5802. https://doi.org/10.3390/ ma16175802
- 6. Khosravani, M.R., Nasiri, S. Injection molding manufacturing process: review of case-based reasoning applications. J Intell Manuf 2020; 31: 847– 864, https://doi.org/10.1007/s10845-019-01481-0
- 7. Gim J., Turng L.-S. A review of current advance- ments in high surface quality injection molding: Measurement, influencing factors, prediction, and control, Polymer Testing, 2022; 115: 107718, https:// doi.org/10.1016/j.polymertesting.2022.107718
- 8. Kuroda, S., Mizutani, A. and Ito, H. Effect of Talc Size on Surface Roughness and Glossiness of Polypropylene Injection Molding Application to Automotive Plastics. Polym Eng Sci, 2020; 60: 132–139. https://doi.org/10.1002/pen.25266
- 9. Schaible T., Schönlein R., Bonten C. Influence of injection molding parameters on the quality of structured surfaces. AIP Conference Proceedings 26 November 2020; 2289(1): 020004. https://doi. org/10.1063/5.0029147
- 10. Farotti E., Natalini M. Injection molding. Influence of process parameters on mechanical properties of polypropylene polymer. A first study., Procedia Structural Integrity, 2018; 8: 256–264, https://doi. org/10.1016/j.prostr.2017.12.027
- 11. Nemani, S.K., Annavarapu, R.K., Mohammadian, B., Raiyan, A., Heil, J., Haque, Md. A., Abdelaal, A., Sojoudi, H. Adv. Mater. Interfaces 2018; 5: 1801247. https://doi.org/10.1002/admi.201801247
- 12. Fabricating Superhydrophobic Polymer Surfaces with Excellent Abrasion Resistance by a Simple Lamination Templating Method; Qian Feng Xu, Bikash Mondal, and Alan M. Lyons ACS Applied Materials & Interfaces 2011; 3(9): 3508–3514. https://doi.org/10.1021/am200741f
- 13. Kraus, E., Baudrit, B., Heidemeyer, P., Bastian M., Stoyanov O.V., Starostina I.A. Surface treatment of polymers by an ultraviolet laser to improve adhesion quality. Polym. Sci. Ser. D 2016; 9: 5–12, https:// doi.org/10.1134/S1995421216010093
- 14. Augustyn, P., Rytlewski, P., Moraczewski, K., Skibicki A., Mazurkiewicz A. Ablation of selected thermoplastic polymers using an Nd:YAG laser. J Mater Sci 2023; 58: 9073–9086. https://doi.org/10.1007/ s10853-023-08566-5
- 15. Rytlewski, P. Studium Laserowego i Plazmowego Modyfikowania Warstwy Wierzchniej Materiałów Polimerowych; Wydawnictwo UKW: Bydgoszcz, Poland, 2015.
- 16. Dywel, P. Szczęsny, R. Domanowski, P. Skowronski, Ł. Structural and Micromechanical Properties of Nd:YAG Laser Marking Stainless Steel (AISI 304 and AISI 316). Materials 2020; 13: 2168. https:// doi.org/10.3390/ma13092168
- 17. Fukuta, S. Nomura, M. Ikeda, T. Yoshizawa, M. Yamasaki, M. Sasaki, Y. UV laser machining of wood. Eur. J. Wood Wood Prod. 2016; 74: 261–267. https://doi.org/10.1007/s00107-016-1010-9
- 18. Penide, J., Quintero, F., Riveiro, A., Fernandez, A.,del Val, J., Comesaña, R., Lusquiños, F., Pou, J. High Contrast Laser Marking of Alumina. Appl. Surf. Sci. 2015; 336: 118–128. https://doi.org/10.1016/j. apsusc.2014.10.004
- 19. Grzesik, W. Prediction of the functional performance of machined components based on Surface topography: State of the art. J. Mater. Eng. Perform. 2016; 25: 4460–4468. https://doi.org/10.1007/ s11665-016-2293-z
- 20. Pawlus, P., Reizer, R., Wieczorowski, M. Functional Importance of Surface Texture Parameters. Materials 2021; 14: 5326. https://doi.org/10.3390/ma14185326
- 21. Whitehouse, D.J. Handbook of Surface and Nanometrology; CRC Press: Boca Raton, FL, USA, 2011, https://doi.org/10.1201/b10415
- 22. Leach, R. Characterisation of Areal Surface Texture; Springer: Berlin/Heidelberg, Germany, 2013, https://doi.org/10.1007/978-3-642-36458-7
- 23. Agrawal, C., Wadhwa, J., Pitroda, A., Pruncu, C.I., Sarikaya, M., Khanna, N. Comprehensive analysis of tool wear, tool life, surface roughness, costing and carbon emissions in turning Ti–6Al–4V titanium alloy: Cryogenic versus wet machining. Tribol. Int. 2021; 153: 10659. https://doi.org/10.1016/j. triboint.2020.106597
- 24. ISO ISO 25178-2:2021 Geometrical Product Specifications (GPS)—Surface Texture: Areal—Part 2: Terms, Definitions and Surface Texture Parameters; International Organization for Standarization: Geneva, Switzerland, 2012. Available online: https:// www.iso.org/standard/42785.html (accessed on 2 December 2023).
- 25. Antończak A.J. Wybrane zagadnienia z laserowej modyfikacji materiałów, Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław 2014.
- 26. Kościuszko, A., Czyżewski, P., Rojewski, M. Modification of Laser Marking Ability and Properties of Polypropylene Using Silica Waste as a Filler. Materials, 2021; 14(22): 6961. https://doi.org/10.3390/ ma14226961
- 27. Czyżewski, P., Skowroński, Ł., Sykutera, D., Rybarczyk, W., Chorobiński, M., Bieliński, M. Ocena efektów laserowego znakowania warstwy wierzchniej wyprasek z polipropylenu. Polimery 2018; 63(11–12): 799–806. https://doi.org/10.14314/polimery.2018.11.8
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f5e78cff-6f57-4b75-9814-51464dd6a0c2